首页> 外文期刊>Statistics and computing >Trajectory inference and parameter estimation in stochastic models with temporally aggregated data
【24h】

Trajectory inference and parameter estimation in stochastic models with temporally aggregated data

机译:具有时间聚集数据的随机模型中的轨迹推断和参数估计

获取原文
获取原文并翻译 | 示例

摘要

Stochastic models are of fundamental importance in many scientific and engineering applications. For example, stochastic models provide valuable insights into the causes and consequences of intra-cellular fluctuations and inter-cellular heterogeneity in molecular biology. The chemical master equation can be used to model intra-cellular stochasticity in living cells, but analytical solutions are rare and numerical simulations are computationally expensive. Inference of system trajectories and estimation of model parameters from observed data are important tasks and are even more challenging. Here, we consider the case where the observed data are aggregated over time. Aggregation of data over time is required in studies of single cell gene expression using a luciferase reporter, where the emitted light can be very faint and is therefore collected for several minutes for each observation. We show how an existing approach to inference based on the linear noise approximation (LNA) can be generalised to the case of temporally aggregated data. We provide a Kalman filter (KF) algorithm which can be combined with the LNA to carry out inference of system variable trajectories and estimation of model parameters. We apply and evaluate our method on both synthetic and real data scenarios and show that it is able to accurately infer the posterior distribution of model parameters in these examples. We demonstrate how applying standard KF inference to aggregated data without accounting for aggregation will tend to underestimate the process noise and can lead to biased parameter estimates.
机译:随机模型在许多科学和工程应用中至关重要。例如,随机模型为分子生物学中细胞内波动和细胞间异质性的原因和后果提供了有价值的见解。化学主方程可用于模拟活细胞中的细胞内随机性,但解析解很少见,数值模拟的计算量很大。从观察到的数据推断系统轨迹和估计模型参数是重要任务,并且更具挑战性。在这里,我们考虑观察数据随时间汇总的情况。在使用萤光素酶报道基因的单细胞基因表达研究中,需要随时间进行数据汇总,在这种情况下,发出的光可能非常微弱,因此每次观察都要收集几分钟。我们展示了如何将基于线性噪声近似(LNA)的现有推理方法推广到时间汇总数据的情况。我们提供了可与LNA结合使用的卡尔曼滤波器(KF)算法,以进行系统变量轨迹的推断和模型参数的估计。我们在合成和真实数据场景中应用和评估了我们的方法,并表明在这些示例中它能够准确地推断模型参数的后验分布。我们证明了在不考虑聚合的情况下将标准KF推论应用于聚合数据将如何低估过程噪声并可能导致参数估计有偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号