首页> 外文期刊>Statistical science >Fisher Lecture: Dimension Reduction in Regression
【24h】

Fisher Lecture: Dimension Reduction in Regression

机译:Fisher讲座:回归中的降维

获取原文
获取原文并翻译 | 示例

摘要

Beginning with a discussion of R. A. Fisher's early written remarks that relate to dimension reduction, this article revisits principal components as a reductive method in regression, develops several model-based extensions and ends with descriptions of general approaches to model-based and model-free dimension reduction in regression. It is argued that the role for principal components and related methodology may be broader than previously seen and that the common practice of conditioning on observed values of the predictors may unnecessarily limit the choice of regression methodology.
机译:从讨论RA Fisher早期关于降维的书面论述开始,本文将主要成分作为回归中的归约方法进行回顾,开发了一些基于模型的扩展,最后以对基于模型和无模型的尺度的一般方法的描述作为结束。减少回归。有人认为,主成分和相关方法的作用可能比以前看到的更广泛,并且以预测变量的观测值为条件的常规做法可能不必要地限制了回归方法的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号