首页> 外文期刊>Statistical science >Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies
【24h】

Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies

机译:非参数高斯过程先验的变量选择:模型和计算策略

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a unified treatment of Gaussian process models that extends to data from the exponential dispersion family and to survival data. Our specific interest is in the analysis of data sets with predictors that have an a priori unknown form of possibly nonlinear associations to the response. The modeling approach we describe incorporates Gaussian processes in a generalized linear model framework to obtain a class of nonparametric regression models where the covariance matrix depends on the predictors. We consider, in particular, continuous, categorical and count responses. We also look into models that account for survival outcomes. We explore alternative covariance formulations for the Gaussian process prior and demonstrate the flexibility of the construction. Next, we focus on the important problem of selecting variables from the set of possible predictors and describe a general framework that employs mixture priors. We compare alternative MCMC strategies for posterior inference and achieve a computationally efficient and practical approach. We demonstrate performances on simulated and benchmark data sets.
机译:本文提出了对高斯过程模型的统一处理,该模型扩展到指数弥散族的数据和生存数据。我们特别感兴趣的是使用预测变量对数据集进行分析,这些预测变量具有与响应可能呈非线性关联的先验未知形式。我们描述的建模方法将高斯过程纳入广义线性模型框架中,以获得一类非参数回归模型,其中协方差矩阵取决于预测变量。我们特别考虑连续,分类和计数响应。我们还研究了能够说明生存结果的模型。我们先探索高斯过程的其他协方差公式,并证明构造的灵活性。接下来,我们重点讨论从可能的预测变量集中选择变量的重要问题,并描述采用混合先验的一般框架。我们比较了用于后验推断的替代MCMC策略,并实现了一种计算有效且实用的方法。我们演示了模拟和基准数据集的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号