首页> 外文期刊>Statistical science >Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling
【24h】

Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling

机译:集成Copula耦合在复杂仿真模型中的不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Critical decisions frequently rely on high-dimensional output from complex computer simulation models that show intricate cross-variable, spatial and temporal dependence structures, with weather and climate predictions being key examples. There is a strongly increasing recognition of the need for uncertainty quantification in such settings, for which we propose and review a general multi-stage procedure called ensemble copula coupling (ECC), proceeding as follows: 1. Generate a raw ensemble, consisting of multiple runs of the computer model that differ in the inputs or model parameters in suitable ways. 2. Apply statistical postprocessing techniques, such as Bayesian model averaging or nonhomogeneous regression, to correct for systematic errors in the raw ensemble, to obtain calibrated and sharp predictive distributions for each univariate output variable individually. 3. Draw a sample from each postprocessed predictive distribution. 4. Rearrange the sampled values in the rank order structure of the raw ensemble to obtain the ECC postprocessed ensemble. The use of ensembles and statistical postprocessing have become routine in weather forecasting over the past decade. We show that seemingly unrelated, recent advances can be interpreted, fused and consolidated within the framework of ECC, the common thread being the adoption of the empirical copula of the raw ensemble. Depending on the use of Quantiles, Random draws or Transformations at the sampling stage, we distinguish the ECC-Q, ECC-R and ECC-T variants, respectively. We also describe relations to the Schaake shuffle and extant copula-based techniques. In a case study, the ECC approach is applied to predictions of temperature, pressure, precipitation and wind over Germany, based on the 50-member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble.
机译:关键决策通常依赖于复杂的计算机仿真模型的高维输出,这些仿真模型显示出复杂的交叉变量,时空依赖性结构,其中天气和气候预测就是关键示例。在这种情况下,对于不确定性量化的需求已得到越来越强烈的认识,为此,我们提出并审查了一种称为“系谱copula耦合”(ECC)的通用多阶段程序,其过程如下:1.生成由多个输入或模型参数以适当方式不同的计算机模型的运行。 2.应用统计后处理技术(例如贝叶斯模型平均或非均质回归)来校正原始集合中的系统误差,以分别获得每个单变量输出变量的校准且精确的预测分布。 3.从每个后处理的预测分布中抽取一个样本。 4.在原始合奏的等级结构中重新排列采样值,以获得ECC后处理合奏。在过去的十年中,合奏的使用和统计后处理已成为天气预报中的常规操作。我们证明,在ECC的框架内,似乎无关紧要的最新进展可以得到解释,融合和巩固,其共同点是采用原始合奏的经验模型。根据在采样阶段使用分位数,随机抽取或转换,我们分别区分ECC-Q,ECC-R和ECC-T变体。我们还描述了与Schaake洗牌和现存的基于copula的技术的关系。在一个案例研究中,基于50个成员的欧洲中距离天气预报中心(ECMWF)集合,ECC方法用于德国上空的温度,压力,降水和风的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号