首页> 外文期刊>Statistical science >The Whetstone and the Alum Block: Balanced Objective Bayesian Comparison of Nested Models for Discrete Data
【24h】

The Whetstone and the Alum Block: Balanced Objective Bayesian Comparison of Nested Models for Discrete Data

机译:磨刀石和明矾块:离散数据嵌套模型的平衡客观贝叶斯比较

获取原文
获取原文并翻译 | 示例

摘要

When two nested models are compared, using a Bayes factor, from an objective standpoint, two seemingly conflicting issues emerge at the time of choosing parameter priors under the two models. On the one hand, for moderate sample sizes, the evidence in favor of the smaller model can be inflated by diffuseness of the prior under the larger model. On the other hand, asymptotically, the evidence in favor of the smaller model typically accumulates at a slower rate. With reference to finitely discrete data models, we show that these two issues can be dealt with jointly, by combining intrinsic priors and nonlocal priors in a new unified class of priors. We illustrate our ideas in a running Bernoulli example, then we apply them to test the equality of two proportions, and finally we deal with the more general case of logistic regression models.
机译:从客观的角度来看,使用贝叶斯因子比较两个嵌套模型时,在两个模型下选择参数先验时会出现两个看似矛盾的问题。一方面,对于中等规模的样本,支持较大模型的证据可以通过较大模型下先验的扩散来夸大。另一方面,渐近地,支持较小模型的证据通常以较慢的速率积累。参考有限离散数据模型,我们表明可以通过在新的统一先验类中组合固有先验和非本地先验来共同处理这两个问题。我们在一个运行中的伯努利示例中说明我们的想法,然后将其应用于检验两个比例的相等性,最后我们处理逻辑回归模型的更一般情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号