首页> 外文期刊>Statistical science >Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models
【24h】

Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models

机译:复杂随机流行病模型的近似贝叶斯计算和基于仿真的推理

获取原文
获取原文并翻译 | 示例

摘要

Approximate Bayesian Computation (ABC) and other simulation-based inference methods are becoming increasingly used for inference in complex systems, due to their relative ease-of-implementation. We briefly review some of the more popular variants of ABC and their application in epidemiology, before using a real-world model of HIV transmission to illustrate some of challenges when applying ABC methods to high-dimensional, computationally intensive models. We then discuss an alternative approach— history matching—that aims to address some of these issues, and conclude with a comparison between these different methodologies.
机译:近似贝叶斯计算(ABC)和其他基于仿真的推理方法正因其相对易于实现而越来越多地用于复杂系统中的推理。在使用真实的HIV传播模型来说明将ABC方法应用于高维,计算密集型模型时,我们将简要回顾ABC的一些较流行的变体及其在流行病学中的应用,以说明一些挑战。然后,我们讨论一种替代方法-历史匹配-该方法旨在解决其中一些问题,并以这些不同方法之间的比较作为结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号