首页> 外文期刊>Statistical Methods and Applications >Random forest-based approach for physiological functional variable selection for driver's stress level classification
【24h】

Random forest-based approach for physiological functional variable selection for driver's stress level classification

机译:基于随机森林的生理功能变量选择方法用于驾驶员压力水平分类

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with physiological functional variables selection for driver's stress level classification using random forests. Our analysis is performed on experimental data extracted from the drivedb open database available on PhysioNet website. The physiological measurements of interest are: electrodermal activity captured on the driver's left hand and foot, electromyogram, respiration, and heart rate, collected from ten driving experiments carried out in three types of routes (rest area, city, and highway). The contributions of this work touch on the method as well as the application aspects. From a methodological viewpoint, the physiological signals are considered as functional variables, decomposed on a wavelet basis and then analyzed in search of most relevant variables. On the application side, the proposed approach provides a blind procedure for driver's stress level classification, giving close performances to those resulting from the expert-based approach, when applied to the drivedb database. It also suggests new physiological features based on the wavelet levels corresponding to the functional variables wavelet decomposition. Finally, the proposed approach provides a ranking of physiological variables according to their importance in stress level classification. For the case under study, results suggest that the electromyogram and the heart rate signals are less relevant compared to the electrodermal and the respiration signals. Furthermore, the electrodermal activity measured on the driver's foot was found more relevant than the one captured on the hand. Finally, the proposed approach also provided an order of relevance of the wavelet features.
机译:本文涉及使用随机森林对驾驶员压力等级分类的生理功能变量选择。我们的分析是根据从PhysioNet网站上的drivedb开放数据库中提取的实验数据进行的。感兴趣的生理测量指标是:从驾驶员的左手和脚部捕获的皮肤电活动,肌电图,呼吸和心率,这些数据是从在三种类型的路线(休息区,城市和高速公路)中进行的十次驾驶实验中收集到的。这项工作的贡献涉及方法以及应用方面。从方法学的角度来看,生理信号被视为功能变量,以小波分解,然后进行分析以寻找最相关的变量。在应用程序方面,所提出的方法为驾驶员的压力水平分类提供了一个盲目的程序,与基于专家的方法应用于drivedb数据库时相比,其性能接近。它还根据与功能变量小波分解相对应的小波水平提出了新的生理特征。最后,提出的方法根据生理变量在压力水平分类中的重要性提供了生理变量的排名。对于正在研究的案例,结果表明,与皮肤电和呼吸信号相比,肌电图和心率信号的相关性较小。此外,发现在驾驶员脚上测量的皮肤电活动比在手上捕获的皮肤电活动更相关。最后,提出的方法还提供了小波特征的相关性顺序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号