首页> 外文期刊>Statistical Methods and Applications >Joint modeling of covariates and censoring process assuming non-constant dropout hazard
【24h】

Joint modeling of covariates and censoring process assuming non-constant dropout hazard

机译:假设存在非恒定的辍学风险,则对协变量和检查过程进行联合建模

获取原文
获取原文并翻译 | 示例

摘要

In this manuscript we propose a novel approach for the analysis of longitudinal data that have informative dropout. We jointly model the slopes of covariates of interest and the censoring process for which we assume a survival model with logistic non-constant dropout hazard in a likelihood function that is integrated over the random effects. Maximization of the marginal likelihood function results in acquiring maximum likelihood estimates for the population slopes and empirical Bayes estimates for the individual slopes that are predicted using Gaussian quadrature. Our simulation study results indicated that the performance of this model is superior in terms of accuracy and validity of the estimates compared to other models such as logistic non-constant hazard censoring model that does not include covariates, logistic constant censoring model with covariates, bootstrapping approach as well as mixed models. Sensitivity analyses for the dropout hazard and non-Gaussian errors were also undertaken to assess robustness of the proposed approach to such violations. Our model was illustrated using a cohort of renal transplant patients with estimated glomerular filtration rate as the outcome of interest.
机译:在这份手稿中,我们提出了一种新颖的方法来分析具有信息缺失的纵向数据。我们共同对感兴趣的协变量的斜率和审查过程进行建模,为此我们假设了一种生存模型,该模型具有在随机效应上积分的似然函数中的逻辑非恒定辍学风险。边际似然函数的最大化导致获得使用高斯求积法预测的总体斜率的最大似然估计和单个斜率的经验贝叶斯估计。我们的模拟研究结果表明,与其他模型(例如不包括协变量的逻辑非恒定危害审查模型,带协变量的逻辑常数审查模型,自举方法)相比,该模型在估计的准确性和有效性方面的性能要好以及混合模型。还对辍学危险和非高斯误差进行了敏感性分析,以评估针对此类违规行为提出的方法的稳健性。我们的模型使用了一组肾移植患者,并以估计的肾小球滤过率作为结果进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号