...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous Neural Computation
【24h】

Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous Neural Computation

机译:天津:统一和可扩展的芯片桥接峰值和连续神经计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Toward the long-standing dream of artificial intelligence, two successful solution paths have been paved: 1) neuromorphic computing and 2) deep learning. Recently, they tend to interact for simultaneously achieving biological plausibility and powerful accuracy. However, models from these two domains have to run on distinct substrates, i.e., neuromorphic platforms and deep learning accelerators, respectively. This architectural incompatibility greatly compromises the modeling flexibility and hinders promising interdisciplinary research. To address this issue, we build a unified model description framework and a unified processing architecture (Tianjic), which covers the full stack from software to hardware. By implementing a set of integration and transformation operations, Tianjic is able to support spiking neural networks, biological dynamic neural networks, multilayered perceptron, convolutional neural networks, recurrent neural networks, and so on. A compatible routing infrastructure enables homogeneous and heterogeneous scalability on a decentralized many-core network. Several optimization methods are incorporated, such as resource and data sharing, near-memory processing, compute/access skipping, and intra-/inter-core pipeline, to improve performance and efficiency. We further design streaming mapping schemes for efficient network deployment with a flexible tradeoff between execution throughput and resource overhead. A 28-nm prototype chip is fabricated with >610-GB/s internal memory bandwidth. A variety of benchmarks are evaluated and compared with GPUs and several existing specialized platforms. In summary, the fully unfolded mapping can achieve significantly higher throughput and power efficiency; the semi-folded mapping can save 30x resources while still presenting comparable performance on average. Finally, two hybrid-paradigm examples, a multimodal unmanned bicycle and a hybrid neural network, are demonstrated to show the potential of our unified architecture. This article paves a new way to explore neural computing.
机译:走向人工智能的长期梦想,两条成功的解决方案路径已经铺设了:1)神经形态计算和2)深入学习。最近,他们倾向于同时互动,以实现生物合理性和强大的准确性。然而,来自这两个结构域的模型必须分别在不同的基材上运行,即神经形态平台和深度学习加速器。这种架构不相容性极大地损害了建模灵活性和妨碍有前途的跨学科研究。要解决此问题,我们构建统一的模型描述框架和统一的处理架构(天津),其将完整堆栈从软件覆盖到硬件。通过实施一系列集成和转型操作,天津能够支持尖峰神经网络,生物动态神经网络,多层的感知,卷积神经网络,经常性神经网络等。兼容的路由基础设施可以在分散的多核网络上实现同质和异构可扩展性。包含几种优化方法,例如资源和数据共享,近记忆处理,计算/访问跳过和/间核心间管道,以提高性能和效率。我们进一步设计流式映射方案,以实现有效的网络部署,在执行吞吐量和资源开销之间具有灵活的权衡。 28纳米原型芯片采用> 610-GB / S内部存储器带宽制造。评估各种基准,并与GPU和几个现有的专业平台进行比较。总之,完全展开的映射可以实现显着提高的吞吐量和功率效率;半折叠映射可以节省30x资源,同时平均呈现可比性的性能。最后,两个混合范例示例,多式联运无人自行车和混合神经网络,被证明是为了显示我们统一架构的潜力。本文铺平了一种探索神经计算的新方法。

著录项

  • 来源
    《IEEE Journal of Solid-State Circuits》 |2020年第8期|2228-2246|共19页
  • 作者单位

    Tsinghua Univ Ctr Brain Inspired Comp Res Dept Precis Instrument Beijing 100084 Peoples R China|Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

    Lynxi Technol Co Ltd Beijing 100097 Peoples R China;

    Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Univ Calif Santa Barbara Dept Comp Sci Santa Barbara CA 93106 USA;

    Lynxi Technol Co Ltd Beijing 100097 Peoples R China;

    Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Tsinghua Univ Ctr Brain Inspired Comp Res Beijing 100084 Peoples R China|Tsinghua Univ Beijing Innovat Ctr Future Chip Beijing 100084 Peoples R China|Tsinghua Univ Dept Precis Instrument Beijing 100084 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine learning; Neuromorphics; Biological neural networks; Computational modeling; Computer architecture; Deep learning accelerator; hybrid paradigm; neuromorphic chip; unified; scalable architecture;

    机译:机器学习;神经形态;生物神经网络;计算建模;计算机架构;深入学习加速器;杂交范式;神经形态芯片;统一;可扩展的架构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号