首页> 外文期刊>Software Testing, Verification and Reliability >Alternative Parameter Estimation Methods for the Compound Poisson Software Reliability Model with Clustered Failure Data
【24h】

Alternative Parameter Estimation Methods for the Compound Poisson Software Reliability Model with Clustered Failure Data

机译:具有聚类失效数据的复合Poisson软件可靠性模型的替代参数估计方法

获取原文
获取原文并翻译 | 示例

摘要

The ‘compound Poisson’ (CP) software reliability model was proposed previously by the first named author for time-between-failure data in terms of CPU seconds, using the ‘maximum likelihood estimation’ (MLE) method to estimate unknown parameters; hence, CPMLE. However, another parameter estimation technique is proposed under ‘nonlinear regression analysis’ (NLR) for the compound Poisson reliability model, giving rise to the name CPNLR. It is observed that the CP model, with different parameter estimation methods, produces equally satisfactory or more favourable results as compared to the Musa–Okumoto (M–O) model, particularly in the event of grouped or clustered (clumped) software failure data. The sampling unit may be a week, day or month within which the failures are clumped, as the error recording facilities dictate in a software testing environment. The proposed CPNLR and CPMLE yield comparatively more favourable results for certain software failure data structures where the frequency distribution of the cluster (clump) size of the software failures per week displays a negative exponential behaviour. Average relative error (ARE), mean squared error (MSE) and average Kolmogorov–Smirnov (K–S Av.Dn) statistics are used as measures of forecast quality for the proposed and competing parameter-estimation techniques in predicting the number of remaining future failures expected to occur until a target stopping time. Comparisons on five different simulated data sets that contain weekly recorded software failures are made to emphasize the advantages and disadvantages of the competing methods by means of the chronological prediction plots around the true target value and zero per cent relative error line. The proposed generalized compound Poisson (MLE and NLR) methods consistently produce more favourable predictions for those software failure data with negative exponential frequency distribution of the failure clump size versus number of weeks. Otherwise, the popularly used competing M–O log-Poisson model is a better fit for those data with a uniform clump size distribution to recognize the log-Poisson effect while the logarithm of the Poisson equation is a constant, hence uniform. The software analyst is urged to perform exploratory data analysis to recognize the nature of the software failure data before favouring a particular reliability estimation method. © 1997 by John Wiley & Sons, Ltd.
机译:“复合泊松”(CP)软件可靠性模型是由第一位具名作者先前针对“失效间隔时间”数据(以CPU秒为单位)提出的,使用“最大似然估计”(MLE)方法来估计未知参数。因此,CPMLE。但是,在“非线性回归分析”(NLR)下提出了另一种用于复合Poisson可靠性模型的参数估计技术,因此命名为CPNLR。可以看出,与Musa-Okumoto(M-O)模型相比,采用不同参数估计方法的CP模型产生的结果令人满意或更令人满意,尤其是在出现分组或聚类(成簇)的软件故障数据的情况下。采样单位可以是一周,一天或一个月内的故障,由于错误记录工具在软件测试环境中规定,故障在其中聚集。对于某些软件故障数据结构,建议的CPNLR和CPMLE会产生相对更有利的结果,其中,每周软件故障的群集(簇)大小的频率分布显示负指数行为。平均相对误差(ARE),均方误差(MSE)和平均Kolmogorov–Smirnov(K–S Av.Dn)统计量在预测剩余数量方面,可作为拟议和竞争性参数估计技术的预测质量的度量预期会在目标停止时间之前发生故障。通过围绕真实目标值和零相对误差线的时间顺序预测图,对包含每周记录的软件故障的五个不同模拟数据集进行了比较,以强调竞争方法的优缺点。所提出的广义复合泊松(MLE和NLR)方法对于那些故障块大小与周数呈负指数频率分布的软件故障数据,始终能产生更有利的预测。否则,流行使用的竞争M–O对数泊松模型更适合于具有均匀团块大小分布的数据,以识别对数泊松效应,而泊松方程的对数是一个常数,因此是均匀的。敦促软件分析人员执行探索性数据分析,以识别软件故障数据的性质,然后再使用特定的可靠性估计方法。 ©1997,John Wiley&Sons,Ltd.。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号