首页> 外文期刊>Software Testing, Verification and Reliability >Coverage-based regression test case selection, minimization and prioritization: a case study on an industrial system
【24h】

Coverage-based regression test case selection, minimization and prioritization: a case study on an industrial system

机译:基于覆盖率的回归测试案例选择,最小化和优先级排序:一个工业系统的案例研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a case study of coverage-based regression testing techniques on a real world industrial system with real regression faults. The study evaluates four common prioritization techniques, a test selection technique, a test suite minimization technique and a hybrid approach that combines selection and minimization. The study also examines the effects of using various coverage criteria on the effectiveness of the studied approaches. The results show that prioritization techniques that are based on additional coverage with finer grained coverage criteria perform significantly better in fault detection rates. The study also reveals that using modification information in prioritization techniques does not significantly enhance fault detection rates. The results show that test selection does not provide significant savings in execution cost (<2%), which might be attributed to the nature of the changes made to the system. Test suite minimization using finer grained coverage criteria could provide significant savings in execution cost (79.5%) while maintaining a fault detection capability level above 70%, thus representing a possible trade-off. The hybrid technique did not provide a significant improvement over traditional minimization techniques. Copyright (c) 2015John Wiley & Sons, Ltd.
机译:本文介绍了在具有实际回归缺陷的现实世界工业系统上基于覆盖率的回归测试技术的案例研究。这项研究评估了四种常见的优先级排序技术:测试选择技术,测试套件最小化技术和结合了选择和最小化的混合方法。该研究还研究了使用各种覆盖标准对所研究方法的有效性的影响。结果表明,基于附加覆盖范围和更细粒度覆盖范围标准的优先级排序技术在故障检测率方面的性能要好得多。研究还表明,在优先级排序技术中使用修改信息不会显着提高故障检测率。结果表明,测试选择不会显着节省执行成本(<2%),这可能归因于对系统所做更改的性质。使用更细粒度的覆盖标准来最小化测试套件可以显着节省执行成本(79.5%),同时将故障检测功能级别保持在70%以上,因此可能会有所取舍。与传统的最小化技术相比,混合技术没有提供重大改进。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号