首页> 外文期刊>Software Testing, Verification and Reliability >Neural network for software reliability analysis of dynamically weighted NHPP growth models with imperfect debugging
【24h】

Neural network for software reliability analysis of dynamically weighted NHPP growth models with imperfect debugging

机译:神经网络用于不完善调试的动态加权NHPP增长模型的软件可靠性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper propose a learning algorithm of supervised back-propagation neural networks for dynamic weighted combination of software reliability model. The proposed model isan assimilation of 3 well-known non-homogeneous poisson process (NHPP)-based software reliability growth models with imperfect debugging. The novel approach of proposed supervised back propagation-based neural network 2-stage architecture has a great impact on the network by combining the imperfect debugging models based on the nature of fault introduction rate during testing and debugging. Function approximation metrics are used for comparing the proposed model with individual models. Three data sets are trained using supervised back-propagation neural networks to compare the performance and validity evaluation of proposed and existing NHPP models and dynamic weighted combinational model. Reliability analysis among important NHPP models incorporating imperfect debugging is illustrated through numerical and graphical explanation of several metrics using supervised back-propagation neural networks.
机译:针对软件可靠性模型的动态加权组合,提出了一种监督反向传播神经网络的学习算法。所提出的模型是对3种基于不完全调试的基于非均匀泊松过程(NHPP)的软件可靠性增长模型的同化。提出的基于监督反向传播的神经网络两阶段体系结构的新颖方法,根据测试和调试过程中故障引入率的性质,结合了不完善的调试模型,对网络产生了重大影响。函数近似度量用于将建议的模型与各个模型进行比较。使用监督反向传播神经网络训练了三个数据集,以比较提议的和现有的NHPP模型以及动态加权组合模型的性能和有效性评估。使用监督的反向传播神经网络,通过对几个指标的数值和图形解释,说明了结合了不完善调试的重要NHPP模型之间的可靠性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号