首页> 外文期刊>Software and systems modeling >Generating process model collections
【24h】

Generating process model collections

机译:生成过程模型集合

获取原文
获取原文并翻译 | 示例

摘要

Business process management plays an important role in the management of organizations. More and more organizations describe their operations as business processes. It is common for organizations to have collections of thousands of business processes, but for reasons of confidentiality these collections are often not, or only partially, available to researchers. On the other hand, research on techniques for managing process model collections, such as techniques for process retrieval, requires large collections for evaluation purposes. Therefore, this paper proposes a technique to generate such collections of process models, based on the properties of real-world collections. Where existing techniques focus on the structure of the process models, the technique proposed in this paper also generates task labels that consists of words from real-life task labels and considers semantic information of node and edge types. We evaluate our technique by applying it to generate two synthetic collections of process models of over 60,000 and over 2,000 models, respectively. We show that the generated synthetic collections have similar properties to the original collections. To the best of our knowledge, this is the first technique that can generate synthetic BPMN models, thus enabling experimentation with process collections that have laboratory-set quantitative parameters and qualitative properties that are based on real-world process model collections.
机译:业务流程管理在组织管理中起着重要作用。越来越多的组织将其运营描述为业务流程。组织通常拥有数千个业务流程的集合,但是出于保密的原因,研究人员通常无法或仅部分使用这些集合。另一方面,对用于管理过程模型集合的技术(例如过程检索技术)的研究需要大量的集合以用于评估。因此,本文提出了一种基于实际集合的属性来生成这种过程模型集合的技术。在现有技术着重于流程模型的结构的情况下,本文提出的技术还可以生成由现实任务标签中的单词组成的任务标签,并考虑节点和边缘类型的语义信息。我们通过将其应用于生成分别超过60,000和2,000多个模型的过程模型的两个合成集合来评估我们的技术。我们显示生成的合成集合具有与原始集合相似的属性。据我们所知,这是第一种可以生成合成BPMN模型的技术,因此可以对具有实验室设置的定量参数和基于真实过程模型集的定性属性的过程集进行实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号