首页> 外文期刊>Advanced engineering informatics >Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections
【24h】

Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections

机译:基于视觉的材料识别,可自动监控施工进度并从无序的现场图像集中生成建筑信息模型

获取原文
获取原文并翻译 | 示例

摘要

Automatically monitoring construction progress or generating Building Information Models using site images collections - beyond point cloud data - requires semantic information such as construction materials and inter-connectivity to be recognized for building elements. In the case of materials such information can only be derived from appearance-based data contained in 2D imagery. Currently, the state-of-the-art texture recognition algorithms which are often used for recognizing materials are very promising (reaching over 95% average accuracy), yet they have mainly been tested in strictly controlled conditions and often do not perform well with images collected from construction sites (dropping to 70% accuracy and lower). In addition, there is no benchmark that validates their performance under real-world construction site conditions. To overcome these limitations, we propose a new vision-based method for material classification from single images taken under unknown viewpoint and site illumination conditions. In the proposed algorithm, material appearance is modeled by a joint probability distribution of responses from a filter bank and principal Hue-Saturation-Value color values and classified using a multiple one-vs.-all X~2 kernel Support Vector Machine classifier. Classification performance is compared with the state-of-the-art algorithms both in computer vision and AEC communities. For experimental studies, a new database containing 20 typical construction materials with more than 150 images per category is assembled and used for validation. Overall, for material classification an average accuracy of 97.1% for 200 × 200 pixel image patches are reported. In cases where image patches are smaller, our method can synthetically generate additional pixels and maintain a competitive accuracy to those reported above (90.8% for 30 × 30 pixel patches). The results show the promise of the applicability of the proposed method and expose the limitations of the state-of-the-art classification algorithms under real world conditions. It further defines a new benchmark that could be used to measure the performance of future algorithms.
机译:使用点图像数据自动监控施工进度或使用站点图像集合生成建筑信息模型-需要点信息,例如建筑材料和互连性等语义信息才能识别建筑元素。对于材料,此类信息只能从2D图像中包含的基于外观的数据中得出。当前,经常用于识别材料的最先进的纹理识别算法非常有前途(达到95%的平均准确度),但是它们主要在严格控制的条件下进行了测试,并且通常在图像处理方面表现不佳从施工现场收集(准确率降至70%或更低)。此外,没有基准可以验证其在实际施工现场条件下的性能。为了克服这些限制,我们提出了一种基于视觉的新方法,用于在未知视点和现场照明条件下对单个图像进行材料分类。在所提出的算法中,材料外观是通过来自滤波器组的响应和主色调饱和度值颜色值的联合概率分布来建模的,并使用多个“一”对所有“ X〜2”内核支持向量机分类器进行分类。将分类性能与计算机视觉和AEC社区中的最新算法进行比较。对于实验研究,一个新的数据库包含20种典型建筑材料,每个类别包含150张图像,并用于验证。总体而言,对于材料分类,报告的200×200像素图像块的平均准确度为97.1%。在图像斑块较小的情况下,我们的方法可以综合生成其他像素,并保持与上述报告相比的准确性(30×30像素斑块为90.8%)。结果表明了该方法的适用性前景,并揭示了在现实世界条件下最新分类算法的局限性。它还定义了一个新的基准,可以用来衡量未来算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号