首页> 外文期刊>Software Engineering, IEEE Transactions on >Bayesian Networks For Evidence-Based Decision-Making in Software Engineering
【24h】

Bayesian Networks For Evidence-Based Decision-Making in Software Engineering

机译:贝叶斯网络用于软件工程中基于证据的决策

获取原文
获取原文并翻译 | 示例

摘要

Recommendation systems in software engineering (SE) should be designed to integrate evidence into practitioners experience. Bayesian networks (BNs) provide a natural statistical framework for evidence-based decision-making by incorporating an integrated summary of the available evidence and associated uncertainty (of consequences). In this study, we follow the lead of computational biology and healthcare decision-making, and investigate the applications of BNs in SE in terms of 1) main software engineering challenges addressed, 2) techniques used to learn causal relationships among variables, 3) techniques used to infer the parameters, and 4) variable types used as BN nodes. We conduct a systematic mapping study to investigate each of these four facets and compare the current usage of BNs in SE with these two domains. Subsequently, we highlight the main limitations of the usage of BNs in SE and propose a Hybrid BN to improve evidence-based decision-making in SE. In two industrial cases, we build sample hybrid BNs and evaluate their performance. The results of our empirical analyses show that hybrid BNs are powerful frameworks that combine expert knowledge with quantitative data. As researchers in SE become more aware of the underlying dynamics of BNs, the proposed models will also advance and naturally contribute to evidence based-decision-making.
机译:软件工程(SE)中的推荐系统应设计为将证据整合到从业者的经验中。贝叶斯网络(BN)通过合并可用证据和相关不确定性(后果)的综合摘要,为基于证据的决策提供了自然的统计框架。在这项研究中,我们跟随计算生物学和医疗保健决策的领导,并从以下方面研究BN在SE中的应用:1)解决的主要软件工程挑战,2)用于学习变量之间因果关系的技术,3)技术用于推断参数,以及4)用作BN节点的变量类型。我们进行了系统的制图研究,以调查这四个方面中的每一个,并将SE中BN的当前用法与这两个域进行比较。随后,我们重点介绍了SE中使用BN的主要局限性,并提出了一种混合BN来改进SE中基于证据的决策。在两个工业案例中,我们构建样本混合BN并评估其性能。我们的经验分析结果表明,混合BN是将专家知识与定量数据结合在一起的强大框架。随着SE的研究人员越来越意识到BN的潜在动态,提出的模型也将不断发展,并自然有助于基于证据的决策制定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号