首页> 外文期刊>IEEE Transactions on Software Engineering >Model-Based Self-Aware Performance and Resource Management Using the Descartes Modeling Language
【24h】

Model-Based Self-Aware Performance and Resource Management Using the Descartes Modeling Language

机译:使用笛卡尔建模语言的基于模型的自觉性能和资源管理

获取原文
获取原文并翻译 | 示例

摘要

Modern IT systems have increasingly distributed and dynamic architectures providing flexibility to adapt to changes in the environment and thus enabling higher resource efficiency. However, these benefits come at the cost of higher system complexity and dynamics. Thus, engineering systems that manage their end-to-end application performance and resource efficiency in an autonomic manner is a challenge. In this article, we present a holistic model-based approach for self-aware performance and resource management leveraging the Descartes Modeling Language (DML), an architecture-level modeling language for online performance and resource management. We propose a novel online performance prediction process that dynamically tailors the model solving depending on the requirements regarding accuracy and overhead. Using these prediction capabilities, we implement a generic model-based control loop for proactive system adaptation. We evaluate our model-based approach in the context of two representative case studies showing that with the proposed methods, significant resource efficiency gains can be achieved while maintaining performance requirements. These results represent the first end-to-end validation of our approach, demonstrating its potential for self-aware performance and resource management in the context of modern IT systems and infrastructures.
机译:现代IT系统具有越来越多的分布式和动态体系结构,这些体系结构提供了适应环境变化的灵活性,因此可以提高资源效率。但是,这些好处是以更高的系统复杂性和动态性为代价的。因此,以自治方式管理其端到端应用程序性能和资源效率的工程系统是一个挑战。在本文中,我们利用笛卡尔建模语言(DML)(一种用于在线性能和资源管理的体系结构级建模语言),提出了一种基于整体模型的自我意识性能和资源管理方法。我们提出了一种新颖的在线性能预测过程,该过程可以根据有关准确性和开销的要求动态调整模型求解。使用这些预测功能,我们实现了基于模型的通用控制回路,以进行主动的系统自适应。我们在两个具有代表性的案例研究的背景下评估了基于模型的方法,这些案例研究表明,使用所提出的方法,可以在保持性能要求的同时获得显着的资源效率收益。这些结果代表了我们方法的首次端到端验证,表明了它在现代IT系统和基础架构中实现自我意识性能和资源管理的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号