首页> 外文期刊>Soft Computing >An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules
【24h】

An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules

机译:用于自动挖掘正负定量关联规则的有效遗传算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a genetic algorithm (GA) is proposed as a search strategy for not only positive but also negative quantitative association rule (AR) mining within databases. Contrary to the methods used as usual, ARs are directly mined without generating frequent itemsets. The proposed GA performs a database-independent approach that does not rely upon the minimum support and the minimum confidence thresholds that are hard to determine for each database. Instead of randomly generated initial population, uniform population that forces the initial population to be not far away from the solutions and distributes it in the feasible region uniformly is used. An adaptive mutation probability, a new operator called uniform operator that ensures the genetic diversity, and an efficient adjusted fitness function are used for mining all interesting ARs from the last population in only single run of GA. The efficiency of the proposed GA is validated upon synthetic and real databases.
机译:在本文中,提出了一种遗传算法(GA)作为一种搜索策略,它不仅可以用于数据库中正向和负向定量关联规则(AR)的挖掘。与通常使用的方法相反,AR是直接开采的,而不会生成频繁的项目集。拟议的遗传算法执行不依赖数据库的方法,该方法不依赖于很难为每个数据库确定的最小支持和最小置信度阈值。代替随机生成的初始种群,使用迫使初始种群离解不远并且将其均匀分布在可行区域中的均匀种群。自适应突变概率,一种新的算子(可确保遗传多样性的统一算子)和有效的调整后的适应度函数可用于仅通过一次GA即可从最后一个种群中挖掘所有有趣的AR。拟议的遗传算法的效率在综合数据库和真实数据库中得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号