首页> 外文期刊>Soft Computing >Text-dependent Speaker Recognition using Wavelets and Neural Networks
【24h】

Text-dependent Speaker Recognition using Wavelets and Neural Networks

机译:基于小波和神经网络的文本相关说话人识别

获取原文
获取原文并翻译 | 示例

摘要

An intelligent system for text-dependent speaker recognition is proposed in this paper. The system consists of a wavelet-based module as the feature extractor of speech signals and a neural-network-based module as the signal classifier. The Daubechies wavelet is employed to filter and compress the speech signals. The fuzzy ARTMAP (FAM) neural network is used to classify the processed signals. A series of experiments on text-dependent gender and speaker recognition are conducted to assess the effectiveness of the proposed system using a collection of vowel signals from 100 speakers. A variety of operating strategies for improving the FAM performance are examined and compared. The experimental results are analyzed and discussed.
机译:提出了一种基于文本的说话人识别智能系统。该系统由作为语音信号特征提取器的基于小波的模块和作为信号分类器的基于神经网络的模块组成。 Daubechies小波用于滤波和压缩语音信号。模糊ARTMAP(FAM)神经网络用于对处理后的信号进行分类。进行了一系列与文本有关的性别和说话者识别的实验,以使用来自100个说话者的元音信号集合来评估所提出系统的有效性。研究并比较了用于改善FAM性能的各种操作策略。对实验结果进行了分析和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号