首页> 外文期刊>Soft Computing >Fuzzy neural networks for obstacle pattern recognition and collision avoidance of fish robots
【24h】

Fuzzy neural networks for obstacle pattern recognition and collision avoidance of fish robots

机译:模糊神经网络在鱼类机器人障碍物识别与避碰中的应用

获取原文
获取原文并翻译 | 示例

摘要

The problems of detection and pattern recognition of obstacles are the most important concerns for fish robots’ path planning to make natural and smooth movements as well as to avoid collision. We can get better control results of fish robot trajectories if we obtain more information in detail about obstacle shapes. The method employing only simple distance measuring IR sensors without cameras and image processing is proposed. The capability of a fish robot to recognize the features of an obstacle to avoid collision is improved using neuro-fuzzy inferences. Approaching angles of the fish robot to an obstacle as well as the evident features such as obstacles’ sizes and shape angles are obtained through neural network training algorithms based on the scanned data. Experimental results show the successful path control of the fish robot without hitting on obstacles.
机译:障碍物的检测和模式识别问题是鱼类机器人进行自然平稳运动并避免碰撞的路径规划中最重要的问题。如果我们详细了解有关障碍物形状的更多信息,则可以更好地控制鱼类机器人轨迹。提出了仅使用简单的不带相机的测距红外传感器进行图像处理的方法。利用神经模糊推理,可以提高鱼类机器人识别障碍物特征以避免碰撞的能力。通过基于扫描数据的神经网络训练算法,可以得到鱼机器人与障碍物的接近角度以及明显的特征,例如障碍物的大小和形状角度。实验结果表明,鱼机器人的路径控制成功,并且没有撞到障碍物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号