首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Obtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels
【24h】

Obtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels

机译:使用遗传算法和基于随机集的语言标签语义从区间删节数据中获取模糊规则

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy memberships can be understood as coverage functions of random sets. This interpretation makes sense in the context of fuzzy rule learning: a random-sets-based semantic of the linguistic labels is compatible with the use of fuzzy statistics for obtaining knowledge bases from data. In particular, in this paper we formulate the learning of a fuzzy-rule-based classifier as a problem of statistical inference. We propose to learn rules by maximizing the likelihood of the classifier. Furthermore, we have extended this methodology to interval-censored data, and propose to use upper and lower bounds of the likelihood to evolve rule bases. Combining descent algorithms and a co-evolutionary scheme, we are able to obtain rule-based classifiers from imprecise data sets, and can also identify the conflictive instances in the training set: those that contribute the most to the indetermination of the likelihood of the model.
机译:模糊隶属度可以理解为随机集的覆盖函数。这种解释在模糊规则学习的上下文中是有意义的:语言标签的基于随机集的语义与使用模糊统计信息从数据中获取知识库兼容。特别是,在本文中,我们将基于模糊规则的分类器的学习公式化为统计推断问题。我们建议通过最大化分类器的可能性来学习规则。此外,我们已经将此方法扩展到间隔检查的数据,并建议使用可能性的上限和下限来发展规则库。结合下降算法和协同进化方案,我们能够从不精确的数据集中获得基于规则的分类器,还可以识别出训练集中的冲突实例:那些对模型可能性的确定最大的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号