首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Image annotation by incorporating word correlations into multi-class SVM
【24h】

Image annotation by incorporating word correlations into multi-class SVM

机译:通过将单词相关性合并到多类SVM中进行图像注释

获取原文
获取原文并翻译 | 示例

摘要

Image annotation systems aim at automatically annotating images with semantic keywords. Machine learning approaches are often used to develop these systems. In this paper, we propose an image annotation approach by incorporating word correlations into multi-class support vector machine (SVM). At first, each image is segmented into five fixed-size blocks instead of time-consuming object segmentation. Every keyword from training images is manually assigned to the corresponding block and word correlations are computed by a co-occurrence matrix. Then, MPEG-7 visual descriptors are applied to these blocks to represent visual features and the minimal-redundancy-maximum-relevance (mRMR) method is used to reduce the feature dimension. A block-feature-based multi-class SVM classifier is trained for 80 semantic concepts. At last, the probabilistic outputs from SVM and the word correlations are integrated to obtain the final annotation keywords. The experiments on Corel 5000 dataset demonstrate our approach is effective and efficient.
机译:图像注释系统旨在利用语义关键字自动注释图像。机器学习方法通​​常用于开发这些系统。在本文中,我们提出了一种将词相关性纳入多类支持向量机(SVM)的图像标注方法。首先,将每个图像分割为五个固定大小的块,而不是耗时的对象分割。将训练图像中的每个关键字手动分配给相应的块,并通过共现矩阵计算单词相关性。然后,将MPEG-7视觉描述符应用于这些块以表示视觉特征,并使用最小冗余最大相关性(mRMR)方法减小特征尺寸。针对80个语义概念训练了基于块功能的多类SVM分类器。最后,将SVM的概率输出和单词相关性进行集成,以获得最终的注释关键字。在Corel 5000数据集上进行的实验证明了我们的方法是有效和高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号