首页> 外文期刊>Smart Grid, IEEE Transactions on >Real-Time Synchrophasor Data Anomaly Detection and Classification Using Isolation Forest, KMeans, and LoOP
【24h】

Real-Time Synchrophasor Data Anomaly Detection and Classification Using Isolation Forest, KMeans, and LoOP

机译:使用隔离林,kmeans和循环的实时同步素数据异常检测和分类

获取原文
获取原文并翻译 | 示例

摘要

Power grid operators assess situational awareness using time-tagged measurements from phasor measurement units (PMUs) placed at multiple locations in a network. However, synchrophasor measurements are prone to anomalies which may impact the performance of phasor based applications. Anomalies include any deviation from expected measurements resulting from power system events or bad data. Bad data include data errors or loss of information due to failures in supporting synchrophasor cyber infrastructure. It is necessary to flag bad data before utilizing for an application. This work proposes a tool for the detection and classification of anomalous data using an unsupervised stacked ensemble learning algorithm. The proposed synchrophasor anomaly detection and classification (SyADC) tool analyzes a selected window of data points using a combination of three unsupervised methods, namely: isolation forest, KMeans and LoOP. The method classifies the data as anomalies or normal data with more than 99% recall. The method also provides a probability of the data to be an event or bad data with more than 99% recall. Results for the IEEE 14 and 68 bus systems with synchrophasor data obtained using Real-Time Digital Simulator and data of industrial PMUs highlight the superiority of the algorithm to detect and classify anomalies.
机译:电网运算符使用从网络中的多个位置处的相量测量单元(PMU)的时间标记测量来评估情境感知。然而,同步素测量易于发生异常,这可能影响基于相量的应用程序的性能。异常包括从电力系统事件或坏数据产生的预期测量的任何偏差。坏数据包括由于支持同步酚网络基础设施的故障而导致的数据错误或信息丢失。在利用应用程序之前,有必要标记错误数据。这项工作提出了一种使用无监督的堆叠集合学习算法检测和分类异常数据的工具。所提出的同步酚异常检测和分类(SYADC)工具使用三种无监督方法的组合分析了所选数据点的窗口,即:隔离林,kmeans和循环。该方法将数据分类为异常或正常数据,超过99%的召回。该方法还提供数据的概率是一个事件或坏数据,超过99%的召回。 IEEE 14和68总线系统具有使用实时数字模拟器获得的同步性数据和工业PMU的数据,突出了算法的优越性来检测和分类异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号