首页> 外文期刊>Smart Grid, IEEE Transactions on >Adaptive Weighted Recurrence Graphs for Appliance Recognition in Non-Intrusive Load Monitoring
【24h】

Adaptive Weighted Recurrence Graphs for Appliance Recognition in Non-Intrusive Load Monitoring

机译:非侵入式负荷监测中的器具识别的自适应加权再次复制图

获取原文
获取原文并翻译 | 示例

摘要

To this day, hyperparameter tuning remains a cumbersome task in Non-Intrusive Load Monitoring (NILM) research, as researchers and practitioners are forced to invest a considerable amount of time in this task. This paper proposes adaptive weighted recurrence graph blocks (AWRG) for appliance feature representation in event-based NILM. An AWRG block can be combined with traditional deep neural network architectures such as Convolutional Neural Networks for appliance recognition. Our approach transforms one cycle per activation current into an weighted recurrence graph and treats the associated hyper-parameters as learn-able parameters. We evaluate our technique on two energy datasets, the industrial dataset LILACD and the residential PLAID dataset. The outcome of our experiments shows that transforming current waveforms into weighted recurrence graphs provides a better feature representation and thus, improved classification results. It is concluded that our approach can guarantee uniqueness of appliance features, leading to enhanced generalisation abilities when compared to the widely researched V-I image features. Furthermore, we show that the initialisation parameters of the AWRG’s have a significant impact on the performance and training convergence.
机译:到这一天,HyperParameter调整仍然是在非侵入式负荷监测(NILM)研究中繁琐的任务,因为研究人员和从业者被迫在这项任务中投入相当大的时间。本文提出了基于事件的NILM中的器具特征表示的自适应加权重复图块(AWRG)。 AWRG块可以与传统的深度神经网络架构相结合,例如卷积神经网络用于设备识别。我们的方法将每个激活电流的一个周期转换为加权复发图,并将关联的超参数视为可用参数。我们在两个能源数据集,工业数据集Lilacd和住宅格子数据集中评估我们的技术。我们的实验结果表明,将电流波形转换成加权复发图提供了更好的特征表示,从而提高了分类结果。得出结论是,与广泛研究的V-I图像特征相比,我们的方法可以保证家电功能的唯一性,导致泛化能力。此外,我们表明AWRG的初始化参数对性能和培训融合产生了重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号