首页> 外文期刊>Smart Grid, IEEE Transactions on >Incorporating Appliance Usage Patterns for Non-Intrusive Load Monitoring and Load Forecasting
【24h】

Incorporating Appliance Usage Patterns for Non-Intrusive Load Monitoring and Load Forecasting

机译:整合设备使用模式以进行非侵入式负载监控和负载预测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel non-intrusive load monitoring (NILM) method which incorporates appliance usage patterns (AUPs) to improve performance of active load identification and forecasting. In the first stage, the AUPs of a given residence were learned using a spectral decomposition based standard NILM algorithm. Then, learnt AUPs were utilized to bias the priori probabilities of the appliances through a specifically constructed fuzzy system. The AUPs contain likelihood measures for each appliance to be active at the present instant based on the recent activity/inactivity of appliances and the time of day. Hence, the priori probabilities determined through the AUPs increase the active load identification accuracy of the NILM algorithm. The proposed method was successfully tested for two standard databases containing real household measurements in USA and Germany. The proposed method demonstrates an improvement in active load estimation when applied to the aforementioned databases as the proposed method augments the smart meter readings with the behavioral trends obtained from AUPs. Furthermore, a residential power consumption forecasting mechanism, which can predict the total active power demand of an aggregated set of houses, 5 min ahead of real time, was successfully formulated and implemented utilizing the proposed AUP based technique.
机译:本文提出了一种新颖的非侵入式负载监控(NILM)方法,该方法结合了设备使用模式(AUP)以提高主动负载识别和预测的性能。在第一阶段,使用基于频谱分解的标准NILM算法学习给定住所的AUP。然后,通过专门构建的模糊系统,将学习到的AUP用于偏置设备的先验概率。 AUP包含基于设备的最近活动/不活动以及一天中的时间针对当前要激活的每个设备的可能性度量。因此,通过AUP确定的先验概率提高了NILM算法的主动负载识别精度。所提出的方法已成功通过两个标准数据库的测试,其中包含美国和德国的实际家庭测量数据。当将本方法应用于上述数据库时,本方法证明了在主动负荷估算方面的改进,因为本方法利用从AUP获得的行为趋势来增强智能电表读数。此外,利用提出的基于AUP的技术,成功地制定并实施了一种住宅功耗预测机制,该机制可以预测实时集合的一组房屋的总有功功率需求,且提前5分钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号