首页> 外文期刊>Smart Grid, IEEE Transactions on >Real-Time Privacy-Preserving Data Release for Smart Meters
【24h】

Real-Time Privacy-Preserving Data Release for Smart Meters

机译:智能电表的实时隐私保留数据释放

获取原文
获取原文并翻译 | 示例

摘要

Smart Meters (SMs) are able to share the power consumption of users with utility providers almost in real-time. These fine-grained signals carry sensitive information about users, which has raised serious concerns from the privacy viewpoint. In this paper, we focus on real-time privacy threats, i.e., potential attackers that try to infer sensitive information from SMs data in an online fashion. We adopt an information-theoretic privacy measure and show that it effectively limits the performance of any attacker. Then, we propose a general formulation to design a privatization mechanism that can provide a target level of privacy by adding a minimal amount of distortion to the SMs measurements. On the other hand, to cope with different applications, a flexible distortion measure is considered. This formulation leads to a general loss function, which is optimized using a deep learning adversarial framework, where two neural networks –referred to as the releaser and the adversary– are trained with opposite goals. An exhaustive empirical study is then performed to validate the performance of the proposed approach and compare it with state-of-the-art methods for the occupancy detection privacy problem. Finally, we also investigate the impact of data mismatch between the releaser and the attacker.
机译:智能电表(SMS)能够几乎实时与储水提供商共享用户的功耗。这些细粒度的信号携带有关用户的敏感信息,从隐私角度提出了严重的问题。在本文中,我们专注于实时隐私威胁,即尝试以在线方式从短信数据推断敏感信息的潜在攻击者。我们采用信息理论隐私措施,并表明它有效地限制了任何攻击者的表现。然后,我们提出了一种普遍的制定来设计私有化机制,可以通过向SMS测量增加最小的失真量来提供目标水平。另一方面,为了应对不同的应用,考虑灵活的失真度量。该配方导致一般损失函数,这是使用深层学习的对抗性框架进行优化的,其中两个神经网络 - 作为释放者和对手的反馈 - 受到相反的目标训练。然后进行详尽的经验研究以验证所提出的方法的性能,并将其与最先进的方法进行比较,以获得占用检测隐私问题。最后,我们还研究了释放者和攻击者之间数据不匹配的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号