首页> 外文期刊>Smart Grid, IEEE Transactions on >Performance and Resilience of Cyber-Physical Control Systems With Reactive Attack Mitigation
【24h】

Performance and Resilience of Cyber-Physical Control Systems With Reactive Attack Mitigation

机译:缓解网络攻击的网络物理控制系统的性能和弹性

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the performance and resilience of a linear cyber-physical control system (CPCS) with attack detection and reactive attack mitigation in the context of power grids. It addresses the problem of deriving an optimal sequence of false data injection attacks that maximizes the state estimation error of the power system. The results provide basic understanding about the limit of the attack impact. The design of the optimal attack is based on a Markov decision process (MDP) formulation, which is solved efficiently using the value iteration method. We apply the proposed framework to the voltage control system of power grids and run extensive simulations using PowerWorld. The results show that our framework can accurately characterize the maximum state estimation errors caused by an attacker who carefully designs the attack sequence to strike a balance between the attack magnitude and stealthiness, due to the simultaneous presence of attack detection and mitigation. Moreover, based on the proposed framework, we analyze the impact of false positives and negatives in detecting attacks on the system performance. The results are important for the system defenders in the joint design of attack detection and mitigation to reduce the impact of these attack detection errors. Finally, as MDP solutions are not scalable for high-dimensional systems, we apply Q-learning with linear and non-linear (neural networks-based) function approximators to solve the attacker's problem in these systems and compare their performances.
机译:本文研究了在电网环境中具有攻击检测和反应性攻击缓解功能的线性网络物理控制系统(CPCS)的性能和弹性。它解决了推导错误的数据注入攻击的最佳顺序的问题,该错误的攻击会最大化电力系统的状态估计误差。结果提供了有关攻击影响极限的基本理解。最佳攻击的设计基于马尔可夫决策过程(MDP)公式,该公式可使用值迭代方法有效解决。我们将提出的框架应用于电网的电压控制系统,并使用PowerWorld进行广泛的仿真。结果表明,由于同时存在攻击检测和缓解措施,我们的框架可以准确地描述由精心设计攻击序列以在攻击强度和隐身性之间取得平衡的攻击者所引起的最大状态估计误差。此外,基于提出的框架,我们分析了误报和否定在检测攻击对系统性能的影响。结果对于系统防御者进行攻击检测和缓解的联合设计以减少这些攻击检测错误的影响非常重要。最后,由于MDP解决方案无法用于高维系统,因此我们将Q学习与线性和非线性(基于神经网络)函数逼近器一起使用,以解决攻击者在这些系统中的问题并比较其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号