首页> 外文期刊>Smart Grid, IEEE Transactions on >A Supervised Machine Learning Approach to Control Energy Storage Devices
【24h】

A Supervised Machine Learning Approach to Control Energy Storage Devices

机译:一种有监督的机器学习方法来控制储能设备

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a supervised machine learning (ML) approach to predict and schedule the real-time operation mode of the next operation interval for residential PV/battery systems controlled by mode-based controllers. The performance of the mode-based economic model-predictive control approach is used as the benchmark. The residential load and PV data used in this paper are 1-min data downloaded from the Pecan Street Project website. The optimal operation mode for each control interval is first derived from the historical data used as the training set. Then, four ML algorithms (i.e., neural network, support vector machine, logistic regression, and random forest algorithms) are applied. We compared the performance of the four algorithms when using different number of features and length of the training sets extracted from different months of the year. Simulation results show that using the ML approach can effectively improve the performance of the mode-based control system and reduce the computation effort of local controllers because the training can be completed on a cloud-based ML engine. The work presented in this paper paves the way for using a shared-learning platform to design controllers of residential PV/storage systems. This may significantly reduce the cost for implementing such systems.
机译:本文介绍了一种有监督的机器学习(ML)方法,以预测和调度由基于模式的控制器控制的住宅光伏/电池系统下一个运行间隔的实时运行模式。基于模式的经济模型预测控制方法的性能用作基准。本文使用的住宅负荷和PV数据是从Pecan Street Project网站下载的1分钟数据。首先从用作训练集的历史数据中得出每个控制间隔的最佳运行模式。然后,应用了四种ML算法(即神经网络,支持向量机,逻辑回归和随机森林算法)。当使用一年中不同月份提取的不同数量的特征和训练集的长度时,我们比较了四种算法的性能。仿真结果表明,由于训练可以在基于云的ML引擎上完成,因此使用ML方法可以有效地提高基于模式的控制系统的性能,并减少本地控制器的计算量。本文介绍的工作为使用共享学习平台设计住宅光伏/存储系统控制器铺平了道路。这可以显着降低实现这种系统的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号