首页> 外文期刊>Smart Grid, IEEE Transactions on >Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
【24h】

Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network

机译:基于LSTM递归神经网络的短期住宅负荷预测

获取原文
获取原文并翻译 | 示例

摘要

As the power system is facing a transition toward a more intelligent, flexible, and interactive system with higher penetration of renewable energy generation, load forecasting, especially short-term load forecasting for individual electric customers plays an increasingly essential role in the future grid planning and operation. Other than aggregated residential load in a large scale, forecasting an electric load of a single energy user is fairly challenging due to the high volatility and uncertainty involved. In this paper, we propose a long short-term memory (LSTM) recurrent neural network-based framework, which is the latest and one of the most popular techniques of deep learning, to tackle this tricky issue. The proposed framework is tested on a publicly available set of real residential smart meter data, of which the performance is comprehensively compared to various benchmarks including the state-of-the-arts in the field of load forecasting. As a result, the proposed LSTM approach outperforms the other listed rival algorithms in the task of short-term load forecasting for individual residential households.
机译:随着电力系统朝着具有更高可再生能源渗透率的更智能,灵活和交互式系统的转变,负荷预测,尤其是单个电力客户的短期负荷预测,在未来的电网规划和规划中扮演着越来越重要的角色。操作。除了大规模汇总住宅负荷外,由于涉及高波动性和不确定性,因此预测单个能源用户的电力负荷也是相当具有挑战性的。在本文中,我们提出了一个基于长期短期记忆(LSTM)的递归神经网络框架,这是深度学习的最新技术和最受欢迎的技术之一,可以解决这一棘手的问题。所提议的框架在一组公开的真实住宅智能电表数据上进行了测试,其性能与各种基准进行了全面比较,其中包括负荷预测领域的最新技术。结果,在针对单个居民家庭的短期负荷预测任务中,所提出的LSTM方法优于其他列出的竞争对手算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号