首页> 外文期刊>Smart Grid, IEEE Transactions on >Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks
【24h】

Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks

机译:基于小波深度神经网络的微电网智能故障检测方案

获取原文
获取原文并翻译 | 示例

摘要

Fault detection is essential in microgrid control and operation, as it enables the system to perform fast fault isolation and recovery. The adoption of inverter-interfaced distributed generation in microgrids makes traditional fault detection schemes inappropriate due to their dependence on significant fault currents. In this paper, we devise an intelligent fault detection scheme for microgrid based on wavelet transform and deep neural networks. The proposed scheme aims to provide fast fault type, phase, and location information for microgrid protection and service recovery. In the scheme, branch current measurements sampled by protective relays are pre-processed by discrete wavelet transform to extract statistical features. Then all available data is input into deep neural networks to develop fault information. Compared with previous work, the proposed scheme can provide significantly better fault type classification accuracy. Moreover, the scheme can also detect the locations of faults, which are unavailable in previous work. To evaluate the performance of the proposed fault detection scheme, we conduct a comprehensive evaluation study on the CERTS microgrid and IEEE 34-bus system. The simulation results demonstrate the efficacy of the proposed scheme in terms of detection accuracy, computation time, and robustness against measurement uncertainty.
机译:故障检测在微电网控制和操作中至关重要,因为它使系统能够执行快速的故障隔离和恢复。由于微电网中逆变器接口分布式发电的采用,传统故障检测方案因其依赖于大量故障电流而不合适。本文设计了一种基于小波变换和深度神经网络的微电网智能故障检测方案。该方案旨在为微电网保护和服务恢复提供快速的故障类型,相位和位置信息。在该方案中,由保护继电器采样的支路电流测量值通过离散小波变换进行预处理,以提取统计特征。然后将所有可用数据输入到深度神经网络中,以开发故障信息。与以前的工作相比,该方案可以提供更好的故障类型分类精度。此外,该方案还可以检测故障的位置,这在以前的工作中是不可用的。为了评估提出的故障检测方案的性能,我们对CERTS微电网和IEEE 34总线系统进行了全面的评估研究。仿真结果证明了该方案在检测精度,计算时间和针对测量不确定性的鲁棒性方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号