首页> 外文期刊>Smart Grid, IEEE Transactions on >On the Accuracy Versus Transparency Trade-Off of Data-Mining Models for Fast-Response PMU-Based Catastrophe Predictors
【24h】

On the Accuracy Versus Transparency Trade-Off of Data-Mining Models for Fast-Response PMU-Based Catastrophe Predictors

机译:基于PMU的快速响应突变预测数据挖掘模型的准确性与透明度之间的权衡

获取原文
获取原文并翻译 | 示例

摘要

In all areas of engineering, modelers are constantly pushing for more accurate models and their goal is generally achieved with increasingly complex, data-mining-based black-box models. On the other hand, model users which include policy makers and systems operators tend to favor transparent, interpretable models not only for predictive decision-making but also for after-the-fact auditing and forensic purposes. In this paper, we investigate this trade-off between the accuracy and the transparency of data-mining-based models in the context of catastrophe predictors for power grid response-based remedial action schemes, at both the protective and operator levels. Wide area severity indices (WASI) are derived from PMU measurements and fed to the corresponding predictors based on data-mining models such as decision trees (DT), random forests (RF), neural networks (NNET), support vector machines (SVM), and fuzzy rule based models (Fuzzy_DT and Fuzzy_ID3). It is observed that while switching from black-box solutions such as NNET, SVM, and RF to transparent fuzzy rule-based predictors, the accuracy deteriorates sharply while transparency and interpretability are improved. Although transparent automation schemes are historically preferred in power system control and operations, we show that, with existing modeling tools, this philosophy fails to achieve the “3-nines” accuracy figures expected from a modern power grid. The transparency and accuracy trade-offs between the developed catastrophe predictors is demonstrated thoroughly on a data base with more than 60 000 instances from a test (10%) and an actual (90%) system combined.
机译:在工程的所有领域,建模人员都在不断寻求更准确的模型,并且他们的目标通常是通过越来越复杂的基于数据挖掘的黑盒模型来实现的。另一方面,包括政策制定者和系统运营商在内的模型用户往往倾向于透明,可解释的模型,不仅用于预测性决策,而且用于事后审核和法证目的。在本文中,我们在保护和运营商级别,针对基于电网响应的补救措施的巨灾预测变量,研究了基于数据挖掘的模型的准确性与透明度之间的权衡。广域严重性指数(WASI)从PMU测量中得出,并根据数据挖掘模型(例如决策树(DT),随机森林(RF),神经网络(NNET),支持向量机(SVM))馈送到相应的预测变量,以及基于模糊规则的模型(Fuzzy_DT和Fuzzy_ID3)。可以看出,当从黑箱解决方案(例如NNET,SVM和RF)切换到基于透明模糊规则的预测变量时,准确性会急剧下降,而透明性和可解释性会得到改善。尽管透明自动化方案历来是电力系统控制和操作的首选,但我们证明,使用现有的建模工具,该原理无法达到现代电网所期望的“三九”精度数字。数据库中包含了来自测试(10%)和实际(90%)的60,000多个实例,充分证明了已开发的灾难预测变量之间的透明度和准确性之间的取舍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号