首页> 外文期刊>Smart Grid, IEEE Transactions on >An Optimal Power Scheduling Method for Demand Response in Home Energy Management System
【24h】

An Optimal Power Scheduling Method for Demand Response in Home Energy Management System

机译:家庭能源管理系统中需求响应的最优功率调度方法

获取原文
获取原文并翻译 | 示例

摘要

With the development of smart grid, residents have the opportunity to schedule their power usage in the home by themselves for the purpose of reducing electricity expense and alleviating the power peak-to-average ratio (PAR). In this paper, we first introduce a general architecture of energy management system (EMS) in a home area network (HAN) based on the smart grid and then propose an efficient scheduling method for home power usage. The home gateway (HG) receives the demand response (DR) information indicating the real-time electricity price that is transferred to an energy management controller (EMC). With the DR, the EMC achieves an optimal power scheduling scheme that can be delivered to each electric appliance by the HG. Accordingly, all appliances in the home operate automatically in the most cost-effective way. When only the real-time pricing (RTP) model is adopted, there is the possibility that most appliances would operate during the time with the lowest electricity price, and this may damage the entire electricity system due to the high PAR. In our research, we combine RTP with the inclining block rate (IBR) model. By adopting this combined pricing model, our proposed power scheduling method would effectively reduce both the electricity cost and PAR, thereby, strengthening the stability of the entire electricity system. Because these kinds of optimization problems are usually nonlinear, we use a genetic algorithm to solve this problem.
机译:随着智能电网的发展,居民有机会自己安排自己的用电时间表,以减少用电费用并减轻平均峰值功率(PAR)。在本文中,我们首先介绍了基于智能电网的家庭局域网(HAN)中能源管理系统(EMS)的一般体系结构,然后提出了一种有效的家庭用电调度方法。家庭网关(HG)接收指示实时电价的需求响应(DR)信息,该信息已传输到能源管理控制器(EMC)。借助DR,EMC实现了可通过HG交付给每个电器的最佳功率调度方案。因此,家庭中的所有电器都以最具成本效益的方式自动运行。如果仅采用实时定价(RTP)模型,则大多数设备可能会在电价最低的时间内运行,并且这可能会因高PAR而损坏整个电力系统。在我们的研究中,我们将RTP与倾斜块速率(IBR)模型结合在一起。通过采用这种组合定价模型,我们提出的电力调度方法将有效降低电力成本和PAR,从而增强整个电力系统的稳定性。由于这类优化问题通常是非线性的,因此我们使用遗传算法来解决此问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号