首页> 外文期刊>Smart Grid, IEEE Transactions on >Intelligent Local Area Signals Based Damping of Power System Oscillations Using Virtual Generators and Approximate Dynamic Programming
【24h】

Intelligent Local Area Signals Based Damping of Power System Oscillations Using Virtual Generators and Approximate Dynamic Programming

机译:使用虚拟发电机和近似动态规划的基于智能局部信号的电力系统振荡阻尼

获取原文
获取原文并翻译 | 示例

摘要

This paper illustrates the development of an intelligent local area signals based controller for damping low-frequency oscillations in power systems. The controller is trained offline to perform well under a wide variety of power system operating points, allowing it to handle the complex, stochastic, and time-varying nature of power systems. Neural network based system identification eliminates the need to develop accurate models from first principles for control design, resulting in a methodology that is completely data driven. The virtual generator concept is used to generate simplified representations of the power system online using time-synchronized signals from phasor measurement units at generating stations within an area of the system. These representations improve scalability by reducing the complexity of the system “seen” by the controller and by allowing it to treat a group of several synchronous machines at distant locations from each other as a single unit for damping control purposes. A reinforcement learning mechanism for approximate dynamic programming allows the controller to approach optimality as it gains experience through interactions with simulations of the system. Results obtained on the 68-bus New England/New York benchmark system demonstrate the effectiveness of the method in damping low-frequency inter-area oscillations without additional control effort.
机译:本文说明了一种用于抑制电力系统低频振荡的基于智能局部信号的控制器的开发。控制器经过离线培训,可在各种电力系统工作点下良好运行,从而能够处理电力系统的复杂,随机和时变性质。基于神经网络的系统识别消除了从用于控制设计的第一原理开发精确模型的需要,从而产生了一种完全由数据驱动的方法。虚拟发电机概念用于使用来自系统区域内发电站中相量测量单元的时间同步信号在线生成电力系统的简化表示。这些表示法通过降低控制器“看到的”系统的复杂性,并允许其将相互远离的位置的几台同步电机的组作为一个单元进行阻尼控制,从而提高了可伸缩性。用于近似动态编程的强化学习机制使控制器能够通过与系统仿真交互来获得经验,从而实现最优性。在68辆新英格兰/纽约基准系统上获得的结果证明了该方法在抑制低频区域间振荡方面的有效性,而无需进行额外的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号