首页> 外文期刊>Smart Grid, IEEE Transactions on >Data-Driven Power Outage Detection by Social Sensors
【24h】

Data-Driven Power Outage Detection by Social Sensors

机译:社交传感器进行数据驱动的断电检测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel method to detect and locate power outages based on the information collected from social media. Twitter is used as a real-time social sensor in the proposed method. To solve the challenges of detecting a targeted event from the fragmented and noisy tweets, we devise a probabilistic framework to integrate the textual, temporal, and spatial information to identify the event. To improve the accuracy of outage detection, we propose a supervised topic model with a heterogeneous information network. The proposed technique is tested with real tweets and outage cases. The numerical results demonstrate the effectiveness of the proposed methodology. The comparison between the proposed method, and support vector machine and statistics Bayesian method shows the accuracy of the developed model.
机译:本文提出了一种基于从社交媒体收集的信息来检测和定位停电的新方法。在所提出的方法中,Twitter被用作实时社交传感器。为了解决从零散且嘈杂的推文中检测到目标事件的挑战,我们设计了一个概率框架来集成文本,时间和空间信息以识别事件。为了提高停电检测的准确性,我们提出了一种具有异构信息网络的监督主题模型。所提出的技术已通过实际的推文和中断案例进行了测试。数值结果证明了所提出方法的有效性。该方法与支持向量机和统计贝叶斯方法的比较表明了该模型的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号