首页> 外文期刊>Smart Grid, IEEE Transactions on >Intelligent Partitioning in Distributed Optimization of Electric Power Systems
【24h】

Intelligent Partitioning in Distributed Optimization of Electric Power Systems

机译:电力系统分布式优化中的智能分区

获取原文
获取原文并翻译 | 示例

摘要

Distributed optimization techniques in electric power systems have drawn increased attention as they provide a scalable way to handle the increasingly complex and large-scale optimization problems associated with the optimal operation of the system. However, little effort has been reported on how to optimally partition the overall optimization problem into subproblems, which significantly affects the efficiency and convergence speed of distributed methods. To address this issue, this paper focuses on how to determine the optimal partition for a given system and optimization problem, and quantify the improvement obtained with the optimal partition in terms of number of iterations and convergence time for solving the ac optimal power flow problem. The proposed approach is based on spectral clustering using a combination of the Hessian matrix of the optimization problem and the admittance matrix as the affinity matrix. Simulation results for the IEEE test systems with 14, 30, 57, 118, and 300 buses confirm the effectiveness of the proposed partitioning method, and the robustness of the performance of a certain partition with respect to the operating point of the system.
机译:电力系统中的分布式优化技术吸引了越来越多的关注,因为它们提供了可伸缩的方式来处理与系统的最佳运行相关的日益复杂和大规模的优化问题。但是,关于如何将整个优化问题最佳地划分为子问题的报道很少,这极大地影响了分布式方法的效率和收敛速度。为了解决这个问题,本文着重于如何确定给定系统和优化问题的最优分配,并根据迭代数量和收敛时间来量化最优分配所获得的改进,以解决交流最优潮流问题。所提出的方法基于频谱聚类,该频谱聚类使用了优化问题的Hessian矩阵和导纳矩阵作为亲和力矩阵的组合。具有14、30、57、118和300总线的IEEE测试系统的仿真结果证实了所提出的分区方法的有效性,以及相对于系统工作点的某些分区的性能的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号