首页> 外文期刊>Smart Grid, IEEE Transactions on >Demand Response Contracts as Real Options: A Probabilistic Evaluation Framework Under Short-Term and Long-Term Uncertainties
【24h】

Demand Response Contracts as Real Options: A Probabilistic Evaluation Framework Under Short-Term and Long-Term Uncertainties

机译:需求响应合同作为实物期权:短期和长期不确定性下的概率评估框架

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to set up a probabilistic framework to assess the value of a portfolio of demand response (DR) customers under both operational (short-term) and planning (long-term) uncertainties through real options (ROs) modeling borrowed from financial theory. In an operational setting, DR is considered as an RO contract allowing an aggregator seeking to maximize its revenue to sell flexible demand in the day-ahead market and balance its energy portfolio in the balancing markets. Sequential Monte Carlo simulations (SMCS) are used to value DR activation decisions based on market price evolutions. These decisions combine DR physical characteristics and portfolio scheduling optimization, whereby the aggregator chooses to exercise only the contracts probabilistically leading to a profit, also considering the physical payback effects of load recovery. Sensitivity of profits to changing market conditions and payback characteristics is also assessed. In an investment setting, subject to long-term uncertainties, the value of an investment in DR-enabling technology is quantified through the Datar–Mathews RO approach that applies hybrid SMCS and scenario analysis. The results show how the flexibility value of DR can be highlighted by modeling it as RO, particularly in high volatile markets, and how realistic inclusion of payback characteristics significantly decrease the benefits estimated for DR. In addition, the proposed RO framework generally allows hedging of the risks incurred under long-term and short-term uncertainties.
机译:本文旨在建立一个概率框架,通过从财务理论中借用的实物期权(RO)模型来评估操作(短期)和计划(长期)不确定性下的需求响应(DR)客户组合的价值。 。在运营环境中,DR被视为RO合同,允许集成商寻求最大限度地提高其收入,以在日间市场中出售灵活的需求并在平衡市场中平衡其能源组合。顺序蒙特卡洛模拟(SMCS)用于根据市场价格演变对DR激活决策进行评估。这些决策将灾难恢复的物理特征和投资组合计划优化结合在一起,从而使聚集者选择仅概率性地行使可带来利润的合同,同时还要考虑负载回收的物理回报。还评估了利润对变化的市场条件和投资回收期特征的敏感性。在投资环境中,受长期不确定性的影响,通过采用混合SMCS和情景分析的Datar-Mathews RO方法可以量化DR支持技术的投资价值。结果表明,如何通过将DR建模为RO来突出DR的灵活性值,尤其是在高波动性市场中,以及现实地包含投资回收期特征如何显着降低DR的估计收益。此外,拟议的RO框架通常允许对冲长期和短期不确定因素下产生的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号