首页> 外文期刊>Simulation >Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms
【24h】

Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms

机译:具有有限缓冲区和固定间隔预防性维护的随机柔性流水车间调度问题:仿真和元启发式算法的混合方法

获取原文
获取原文并翻译 | 示例

摘要

This study focused on the uncertain flexible flow shop scheduling problem with limited buffers when preventive maintenance is applied at fixed intervals. This issue has not been addressed in spite of widespread applications, due to complexity arising in solving such a stochastic decision making problem. To this aim, a novel optimization model is presented along with two types of solving methods using metaheuristic algorithms with and without a computer simulation model. The proposed hybrid method, named HSIM-META, integrates the computer simulation model along with the three most common metaheuristic algorithms, i.e., genetic algorithm (GA), simulated annealing (SA) algorithm, and particle swarm optimization (PSO), which offer better solution quality according to the literature. For this purpose, the simulation outputs are applied as an initial population for the tuned metaheuristic parameters to look for the next improved solution by investigating different approaches. Different numerical examples are discussed to examine the performance of the proposed method. The computational results of the proposed method, including hybrid simulation with GA (HSIM-GA), SA (HSIM-SA), and PSO (HSIM-PSO), are compared with the just applying GA, SA, and PSO. The results reveal that the suggested method acts more efficiently in terms of accuracy and speed in solving the problem.
机译:这项研究的重点是当以固定的间隔进行预防性维护时,具有有限缓冲区的不确定的柔性流水车间调度问题。尽管解决了广泛的应用,但由于解决这种随机决策问题而变得复杂,因此尚未解决该问题。为此,提出了一种新颖的优化模型,以及使用有和没有计算机仿真模型的使用元启发式算法的两种求解方法。提出的名为HSIM-META的混合方法将计算机仿真模型与三种最常见的元启发式算法(即遗传算法(GA),模拟退火(SA)算法和粒子群优化(PSO))集成在一起。根据文献的解决方案质量。为此,将模拟输出用作已调整的元启发式参数的初始填充,以通过研究不同的方法来寻找下一个改进的解决方案。讨论了不同的数值示例,以检验所提出方法的性能。将该方法的计算结果,包括与GA(HSIM-GA),SA(HSIM-SA)和PSO(HSIM-PSO)的混合仿真,与仅应用GA,SA和PSO进行了比较。结果表明,所提出的方法在解决问题的准确性和速度方面更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号