首页> 外文期刊>Simulation >Simulation optimization using genetic algorithms with optimal computing budget allocation
【24h】

Simulation optimization using genetic algorithms with optimal computing budget allocation

机译:使用遗传算法优化计算预算分配的仿真优化

获取原文
获取原文并翻译 | 示例

摘要

A method is proposed to improve the efficiency of simulation optimization by integrating the notion of optimal computing budget allocation into the genetic algorithm, which is a global optimization search method that iteratively generates new solutions using elite candidate solutions. When applying genetic algorithms in a stochastic setting, each solution must be simulated a large number of times. Hence, the computing budget allocation can make a significant difference to the performance of the genetic algorithm. An easily implementable closed-form computing budget allocation rule of ranking the best m solutions out of total k solutions is proposed. The proposed budget allocation rule can perform better than the existing asymptotically optimal allocation rule for ranking the best m solutions. By integrating the proposed budget allocation rule, the search efficiency of genetic algorithms has significantly improved, as shown in the numerical examples.
机译:提出了一种通过将最优计算预算分配概念整合到遗传算法中来提高仿真优化效率的方法,这是一种全局优化搜索方法,它使用精英候选解迭代地生成新解。在随机环境中应用遗传算法时,必须多次模拟每个解决方案。因此,计算预算分配可以对遗传算法的性能产生重大影响。提出了一种易于实现的封闭形式的计算预算分配规则,该规则将总k个解决方案中的最佳m个解决方案进行排名。拟议的预算分配规则可以比现有的渐近最优分配规则更好地进行最佳m个解决方案的排名。通过整合提出的预算分配规则,遗传算法的搜索效率得到了显着提高,如数值示例所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号