首页> 外文期刊>Simulation >Localized recursive spatial-temporal state quantification method for data assimilation of wildfire spread simulation
【24h】

Localized recursive spatial-temporal state quantification method for data assimilation of wildfire spread simulation

机译:野火扩散模拟数据同化的局部递归时空状态量化方法

获取原文
获取原文并翻译 | 示例

摘要

Data assimilation is a procedure to improve the state inference by assimilating the real-time observation data into dynamic systems, such as wildfire spread simulation. Various techniques are used for data assimilation, such as sequential Monte Carlo methods, also called particle filters. In the standard sequential Monte Carlo methods, the used number of particles is the same during the entire process and their convergence is not measured or characterized for runtime state estimation. Therefore, to guarantee the convergence, an abundance of particles is required so that they can be widely distributed in the state space to converge to the true posterior of the system state. In the application of wildfire spread simulation, the spatial states are large and the system behaves in a heterogeneous manner in different fire areas. The heterogeneous feature and the spatially and temporally dynamic behavior of the wildfire spread simulation cause the state inference uncertainty to be dynamically changed. In this paper, we propose the localized recursive spatial-temporal state quantification method to measure the convergence of particles at runtime and apply various approaches to improve the state inference. To show its effectiveness, we apply two different algorithms - the adaptively perturbing the localized state space algorithm and the adaptive particle filtering algorithm - to the localized recursive spatial-temporal state quantification method to improve the state estimation and enhance the performance respectively. The designed experiments are used to show the effectiveness of the adaptively perturbing the localized state space algorithm and the adaptive particle filtering algorithm in the improvement of the state estimation and the performance of data assimilation in wildfire spread simulation.
机译:数据同化是通过将实时观测数据同化到动态系统(如野火扩散模拟)中来改善状态推断的过程。各种技术用于数据同化,例如顺序蒙特卡罗方法,也称为粒子滤波器。在标准的顺序蒙特卡洛方法中,在整个过程中使用的粒子数量是相同的,并且未测量或表征其收敛性以进行运行时状态估计。因此,为了保证收敛,需要大量粒子,以便它们可以在状态空间中广泛分布以收敛到系统状态的真实后验。在野火蔓延模拟的应用中,空间状态很大,并且系统在不同的火区中表现为异质性。野火蔓延模拟的异质性特征和时空动态行为导致状态推断不确定性动态变化。在本文中,我们提出了一种局部递归的时空状态量化方法,以测量运行时粒子的收敛性,并应用各种方法来改进状态推断。为了显示其有效性,我们将两种不同的算法-自适应扰动局部状态空间算法和自适应粒子滤波算法-应用于局部递归时空状态量化方法,以分别改善状态估计并提高性能。通过设计实验证明了自适应扰动局部状态空间算法和自适应粒子滤波算法在野火扩散模拟中状态估计的改进和数据同化性能方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号