首页> 外文学位 >Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors.
【24h】

Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors.

机译:轻水反应堆多物理场高级仿真的不确定性量化,数据同化和目标精度评估的可扩展方法。

获取原文
获取原文并翻译 | 示例

摘要

High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems.;This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA).;Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach.;On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems.;Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested.;The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).
机译:核反应堆的高保真度仿真需要以高尺寸和巨大复杂性为特征的大规模应用,其中各种物理模型以耦合模型的形式集成在一起(例如具有热工液压反馈的中子学)。每个耦合模块代表了控制感兴趣物理学的第一原理的高保真度。因此,高保真多物理场仿真和相应的灵敏度/不确定度定量分析的新发展对于通过增强对设计和安全裕度的理解而实现的反应堆的发展和竞争力至关重要。因此,本文针对大规模,多物理场反应堆设计和安全问题,引入了高效,可扩展的算法,以进行有效的不确定性量化(UQ),数据同化(DA)和目标精度评估(TAA)。用于自适应核心仿真和降阶建模算法,并将这些工作扩展到具有反馈的耦合多物理场模型。核心思想是按照降阶模型重塑反应堆物理分析。这可以通过子空间分析确定重要/有影响的自由度(DoF)来实现,这样就可以仅考虑重要的DoF来重铸所需的分析。本文针对具有反馈的单物理和多物理应用开发了有效的低维子空间构造算法。然后将缩小的子空间用于解决现实的大规模前向问题(UQ)和逆向问题(DA和TAA)。;一旦确定了自由度的精英集合,就可以进行不确定性/灵敏度/目标精度评估和数据同化分析准确,高效地用于大规模,高维多物理场核工程应用。因此,在这项工作中,先前开发的用于量化单个物理模型不确定性的基于Karhunen-Loeve(KL)的算法被扩展为具有反馈效应的大规模多物理场耦合问题。此外,还开发,使用了基于非线性代理的UQ方法,并将其与KL方法和蛮力蒙特卡洛(MC)方法的性能进行了比较;另一方面,开发了一种有效的数据同化(DA)算法来评估有关模型参数的信息:核数据横截面和热工液压参数。为了对高维问题执行DA,引入了两个改进。首先,可以使用目标导向的替代模型来替换消耗序列中的原始模型(MPACT-COBRA-TF-ORIGEN)。其次,用低维子空间近似复杂的高维解空间,使得高维问题的DA采样过程成为可能。此外,安全性分析和设计优化取决于对各种反应堆属性的准确预测。可以通过减少与感兴趣属性相关的不确定性来增强预测。因此,可以定义和解决反问题,以评估不确定性来源的影响;随后可以进行实验,以进一步改善与这些来源相关的不确定性。本文开发并测试了一种基于子空间的无梯度非线性逆不确定性算法,即目标精度评估(TAA)。;本论文提出的思想首先利用SCALE6.1模拟的晶格物理学应用进行了验证。包(加压水反应堆(PWR)和沸水反应堆(BWR)晶格模型)。最终,她提出的算法被应用于执行组装级的UQ和DA(CASL级数6)和代表耗竭第1周期的瓦茨核1(WBN1)的核心范围问题(CASL级数9),通过模拟来建模使用由多个多物理场耦合模型组成的VERA-CS。本文对基于不确定性/灵敏度估计器的降阶建模的新开发工具套件算法进行了编码和实现。

著录项

  • 作者

    Khuwaileh, Bassam.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Nuclear engineering.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 371 p.
  • 总页数 371
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号