首页> 外文期刊>Signal processing >Fuzzy neural nets with non-symmetric π membership functions and applications in signal processing and image analysis
【24h】

Fuzzy neural nets with non-symmetric π membership functions and applications in signal processing and image analysis

机译:具有非对称π隶属函数的模糊神经网络及其在信号处理和图像分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Interpolation, estimation and classification, widely used in signal processing and image analysis, can be considered as problems of optimization. Different systems could be used, some are based on known numerical data, and the others, on expert rules. In general, they have difficulty to integrate both the knowledge of experts and that implied in known numerical training samples. In the present paper, we propose to use neural fuzzy systems with non-symmetric π membership functions. A new global optimization criterion and the learning algorithm are also presented. Experi- mental results of applications to interpolation, estimation and classification problems are reported. The comparison with other methods shows a better behavior of such systems. Non-symmetric πmembership function gives a more general model of fuzzy rules, improving the precision of neural fuzzy system and assuring a good convergence in learning. The neural fuzzy system using non-symmetric ? membership functions allows integrating both the knowledge of experts and that implied in numerical training samples.
机译:插值,估计和分类广泛应用于信号处理和图像分析中,可以认为是优化问题。可以使用不同的系统,一些基于已知的数值数据,而其他则基于专家规则。通常,他们很难整合专家的知识和已知数值训练样本中所隐含的知识。在本文中,我们建议使用具有非对称π隶属函数的神经模糊系统。还提出了一种新的全局优化准则和学习算法。报告了插值,估计和分类问题应用的实验结果。与其他方法的比较显示了此类系统的更好行为。非对称π隶属函数给出了更通用的模糊规则模型,提高了神经模糊系统的精度,并确保了良好的学习收敛性。使用非对称的神经模糊系统隶属函数可以整合专家的知识和数值训练样本中所隐含的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号