首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >On the Equivalence of a Table Lookup (TL) Technique and Fuzzy Neural Network (FNN) With Block Pulse Membership Functions (BPMFs) and Its Application to Water Injection Control of an Automobile
【24h】

On the Equivalence of a Table Lookup (TL) Technique and Fuzzy Neural Network (FNN) With Block Pulse Membership Functions (BPMFs) and Its Application to Water Injection Control of an Automobile

机译:具有块脉冲隶属度函数(BPMF)的查表(TL)技术和模糊神经网络(FNN)的等效性及其在汽车注水控制中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an alternative method to design a fuzzy neural network (FNN) using a set of nonoverlapped block pulse membership functions (BMPFs), and this FNN with nonoverlapped BPMFs will be shown to be equivalent to the conventional table lookup (TL) technique. Therefore, the hidden links between TL and FNN techniques are revealed in this paper that provides a methodology to design a TL controller based on the FNN design concept. In order to do so, a new direct formula is first developed to generate the fuzzy rules from the premise part in FNN. This direct formula not only guarantees a one-to-one mapping that maps the fuzzy membership functions onto the fuzzy rules, but also alleviates the coding effort during hardware implementation. It is further elaborated that the FNN with nonoverlapped BPMFs has the advantage of faster online training that requires less computation time, but at the cost of more memory requirement to store the fuzzy rules. The application of this new approach has been applied successfully in the water injection control of a turbo-charged automobile with excellent results.
机译:本文提出了一种使用一组不重叠的块脉冲隶属函数(BMPF)设计模糊神经网络(FNN)的替代方法,这种具有不重叠的BPMF的FNN将被证明等同于常规的表查找(TL)技术。因此,本文揭示了TL和FNN技术之间的隐藏联系,为基于FNN设计概念的TL控制器设计提供了一种方法。为此,首先开发了一个新的直接公式,以从FNN中的前提部分生成模糊规则。该直接公式不仅保证了将模糊隶属函数映射到模糊规则的一对一映射,而且减轻了硬件实现过程中的编码工作。进一步说明,具有不重叠BPMF的FNN具有更快的在线训练优势,需要更少的计算时间,但以存储模糊规则所需的更多内存为代价。这种新方法的应用已成功应用于涡轮增压汽车的注水控制中,效果极佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号