首页> 外文期刊>Signal processing >Modeling general distributed nonstationary process and identifying time-varying autoregressive system by wavelets: theory and application
【24h】

Modeling general distributed nonstationary process and identifying time-varying autoregressive system by wavelets: theory and application

机译:用小波建模一般分布式非平稳过程并识别时变自回归系统:理论与应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, some new techniques for time-varying parametric autoregressive (AR) system identification by wavelets are presented. Firstly, we derive a new multiresolution least squares (MLS) algorithm for Gaussian time-varying AR model identification employing wavelet operator matrix representation. This method can optimally balance between the over-fitted solution and the poorly represented indentification.
机译:本文提出了一些利用小波识别时变参数自回归(AR)系统的新技术。首先,利用小波算子矩阵表示法,推导了一种新的多分辨率最小二乘算法用于高斯时变AR模型识别。该方法可以在过度拟合的解决方案和识别效果较差的标识之间实现最佳平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号