首页> 外文期刊>Signal processing >MMSE filtering of generalised signal-dependent noise in spatial and shift-invariant wavelet domains
【24h】

MMSE filtering of generalised signal-dependent noise in spatial and shift-invariant wavelet domains

机译:MMSE滤波的空间和位移不变小波域中的广义信号相关噪声

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the topic of filtering digital images corrupted by signal-dependent additive white noise. The noise model is fully parametric to take into account different noise generation processes, like speckle and film-grain noise. Noise reduction is first approached as a linear minimum mean square error estimation in the spatial domain, thus extending previous results to the most general signal-dependent white noise model. The same type of estimation is performed in a shift-invariant wavelet domain, in which the absence of decimation of the decomposition avoids the typical ringing/aliasing impairments of critically subsampled wavelet-based denoising schemes. In the former case, filtered pixel values are obtained as adaptive combinations of raw and of local average values, driven by locally computed statistics. In the latter case, detail wavelet coefficients of the noisy image are adaptively shrunk by using local statistics derived from the noisy image and the noise model, before the denoised image is synthesised. Experimental results demonstrate that the proposed approaches take full advantage of the knowledge of the underlying noise model. Furthermore, the multi-resolution algorithm steadily outperforms the spatial counterpart in terms of both SNR increment and of enhancement in visual quality. (c) 2005 Elsevier B.V. All rights reserved.
机译:本文探讨了过滤因信号相关的加性白噪声而损坏的数字图像的主题。噪声模型是完全参数化的,以考虑到不同的噪声生成过程,例如斑点噪声和薄膜噪声。降噪首先在空间域中作为线性最小均方误差估计进行,从而将先前的结果扩展到最通用的依赖信号的白噪声模型。在平移不变小波域中执行相同类型的估计,其中不进行分解抽取,可以避免基于临界子采样小波的降噪方案的典型振铃/混叠损伤。在前一种情况下,在本地计算的统计信息的驱动下,将滤波后的像素值作为原始平均值和局部平均值的自适应组合来获取。在后一种情况下,在合成去噪图像之前,通过使用从噪声图像和噪声模型得出的局部统计量,自适应地缩小噪声图像的细节小波系数。实验结果表明,所提出的方法充分利用了潜在噪声模型的知识。此外,就SNR增量和视觉质量的增强而言,多分辨率算法稳定地胜过空间匹配。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号