首页> 外文期刊>Signal processing >A novel approach to the detection of small objects with low contrast
【24h】

A novel approach to the detection of small objects with low contrast

机译:一种检测低对比度小物体的新颖方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective approach to the detection of small objects by employing watershed-based transformation. In our work, moving objects with small size and low contrast are first detected from an image sequence which was captured from a video camera. The proposed detection system includes two main modules, region of interest (ROI) locating and contour extraction. In the former module, an image differencing technique is first employed on two contiguous image frames to generate rough candidate objects appearing in the images. A novel neighboring encoding technique along with the image differencing technique is devised here to effectively reduce noise which usually affects the performance of detection results, especially for small objects. Next, we find the bounded rectangles enclosing the denoised candidate objects, which in turn generate ROI However, the results of the previous process fail to characterize object contours. To do this, we need to devise a contour extraction technique. Unfortunately, satisfactory results cannot be obtained by applying traditional contour extraction methods. To solve this problem, the watershed-based transformation along with the region matching technique is employed to obtain better object contours. Experimental results validate that the proposed approach is indeed feasible and effective in detecting objects with small size and low contrast. (c) 2005 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于分水岭的变换检测小物体的有效方法。在我们的工作中,首先从摄像机拍摄的图像序列中检测出小尺寸和低对比度的运动物体。所提出的检测系统包括两个主要模块,感兴趣区域(ROI)定位和轮廓提取。在前一个模块中,首先在两个连续的图像帧上使用图像区分技术,以生成出现在图像中的粗糙候选对象。这里设计了一种新颖的相邻编码技术以及图像差分技术,以有效地减少通常影响检测结果性能的噪声,特别是对于小物体。接下来,我们找到包围去噪候选对象的有界矩形,这反过来又产生了ROI。但是,先前过程的结果无法描述对象轮廓。为此,我们需要设计一种轮廓提取技术。不幸的是,通过应用传统的轮廓提取方法无法获得令人满意的结果。为了解决这个问题,采用了基于分水岭的变换以及区域匹配技术来获得更好的物体轮廓。实验结果证明,该方法在检测小尺寸和低对比度的物体时确实可行且有效。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号