首页> 外文期刊>Signal processing >A new nonlinear filter for parameters identification in dynamic systems and application to a transmission channel
【24h】

A new nonlinear filter for parameters identification in dynamic systems and application to a transmission channel

机译:一种用于动态系统参数辨识的新型非线性滤波器及其在传输通道中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose general nonlinear models for off-line and on-line parameters identification in dynamic systems. These numerical filters can be applied to any nonlinear system represented by a state equation and an observation equation both nonlinear. The theory of hidden Markov models is used to derive these algorithms starting from a of Baum & Welch type method. The proposed identification algorithm has two levels: the first level is an iterative and global algorithm (IGA), it estimates iteratively the parameters from a block of data. The second level is an ergodic recursive algorithm (ERA), it estimates the parameters in an adaptive manner. The estimators defined by these algorithms converge almost surely to the true values of the model parameters studied in [A. Khoukhi, T. Aliziane, M. Souilah, Un Algorithme Multi-Niveau d'Identification d'un Canal en Communication Numerique, JESA 36(4) (2002) 519-537; M. Souilah, A. Khoukhi, T. Aliziane, A new multi-level algorithm for identification and stochastic adaptive control of industrial manipulators, Eng. Simulation 26(4) (2004) 83- 98; M. Souilah, A new strategy for identification and control of mobile robots, Eng. Simulation 28(3) (2006) 35-48]. The advantage of the proposed nonlinear filters in relation to classical autoregressive models is the fact that the nonlinearity of the model is taken into account as it is and no linearizations are made around a nominal position. The variances of the added noises are also estimated. The mathematical convergence of the algorithms IGA and ERA is an open problem in the general case. We propose to this end an interesting conjecture based on ergodic theory. These algorithms are applied to identify the parameters of a transmission channel in data communication. Some simulation results showing the convergence of these algorithms are given.
机译:在本文中,我们提出了用于动态系统中离线和在线参数识别的通用非线性模型。这些数值滤波器可以应用于由状态方程和观测方程表示的任何非线性系统,这两个方程都是非线性的。隐马尔可夫模型的理论被用来从Baum&Welch类型的方法开始推导这些算法。所提出的识别算法具有两个级别:第一个级别是迭代全局算法(IGA),它从一个数据块中迭代地估计参数。第二层是遍历递归算法(ERA),它以自适应方式估计参数。这些算法定义的估计量几乎可以肯定地收敛到[A.]中研究的模型参数的真实值。 Khoukhi,T.Aliziane,M.Souilah,《算法论中的多运河识别算法》,JESA 36(4)(2002)519-537; M. Souilah,A。Khoukhi,T。Aliziane,一种新的用于识别和随机控制工业机械手的多级算法,英文。模拟26(4)(2004)83-98; M. Souilah,一种识别和控制移动机器人的新策略,英文。模拟28(3)(2006)35-48]。相对于经典自回归模型,所提出的非线性滤波器的优点是以下事实:直接考虑了模型的非线性,并且在标称位置附近未进行任何线性化处理。还估计了增加的噪声的方差。在一般情况下,算法IGA和ERA的数学收敛是一个未解决的问题。为此,我们提出了一个基于遍历理论的有趣猜想。这些算法被应用于识别数据通信中的传输信道的参数。仿真结果表明了这些算法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号