首页> 外文期刊>Signal processing >Fast fixed-point independent vector analysis algorithms for convolutive blind source separation
【24h】

Fast fixed-point independent vector analysis algorithms for convolutive blind source separation

机译:快速定点独立矢量分析算法,用于卷积盲源分离

获取原文
获取原文并翻译 | 示例

摘要

A new type of independent component analysis (ICA) model showed excellence in tackling the blind source separation problem in the frequency domain. The new model, called independent vector analysis, is an extension of ICA for (independent) multivariate sources where the sources are mixed component-wise. In this work we examine available contrasts for the new formulation that can solve the frequency-domain blind source separation problem. Also, we introduce a quadratic Taylor polynomial in the notations of complex variables which is very useful in directly applying Newton's method to a contrast function of complex-valued variables. The use of the form makes the derivation of a Newton update rule simple and clear. Fast fixed-point blind source separation algorithms are derived and the performance is shown by experimental results.
机译:一种新型的独立成分分析(ICA)模型显示出在频域中解决盲源分离问题方面的卓越表现。新模型称为独立矢量分析,是ICA对(独立)多元源的扩展,其中源是按成分混合的。在这项工作中,我们研究了可以解决频域盲源分离问题的新公式的可用对比。此外,我们在复变量的符号中引入了二次泰勒多项式,这对于将牛顿法直接应用于复数值变量的对比函数非常有用。表格的使用使牛顿更新规则的推导变得简单明了。推导了快速的定点盲源分离算法,并通过实验结果表明了其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号