首页> 外文期刊>Signal processing >Unbiased equation-error based algorithms for efficient system identification using noisy measurements
【24h】

Unbiased equation-error based algorithms for efficient system identification using noisy measurements

机译:基于无偏方程误差的算法,利用噪声测量进行有效的系统识别

获取原文
获取原文并翻译 | 示例

摘要

Based on the equation-error approach, two constrained weighted least squares algorithms are developed for unbiased infinite impulse response system identification. Both white input and output noise are present, and the ratio of the noise powers is known. Through a weighting matrix, the first algorithm uses a generalized unit-norm constraint which is a generalization of the Koopmans-Levin method. The second method employs a monic constraint which in fact is a relaxation algorithm for maximum likelihood estimation in Gaussian noise. Algorithm modifications for the input-noise-only or output-noise-only cases are also given. Via computer simulations, the effectiveness of the proposed estimators is demonstrated by contrasting with conventional benchmarks in different signal-to-noise ratio and data length conditions.
机译:基于方程误差方法,开发了两种约束加权最小二乘算法,用于无偏差无限冲激响应系统的辨识。白色输入和输出噪声都存在,并且噪声功率的比率是已知的。通过加权矩阵,第一种算法使用广义单位范式约束,该约束是Koopmans-Levin方法的广义。第二种方法采用单数约束,实际上是用于高斯噪声中最大似然估计的松弛算法。还给出了仅输入噪声或仅输出噪声情况的算法修改。通过计算机仿真,通过在不同信噪比和数据长度条件下与常规基准进行对比,证明了所提出估计器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号