首页> 外文期刊>Signal processing >A new incremental affine projection-based adaptive algorithm for distributed networks
【24h】

A new incremental affine projection-based adaptive algorithm for distributed networks

机译:一种新的基于增量仿射投影的分布式网络自适应算法

获取原文
获取原文并翻译 | 示例

摘要

A new incremental adaptive learning scheme based on the affine projection algorithm (APA), which is developed from Newton's method, is formulated for distributed networks to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The simulation results verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance at the steady-state stage with lower computational cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, and memory cost than a recursive-least-squares (RLS)-based method.
机译:牛顿方法开发的一种基于仿射投影算法(APA)的增量式自适应学习方案,针对分布式网络制定了新的增量式自适应学习方案,以改善具有彩色输入的最小均方(LMS)型分布式自适应滤波器的有限收敛性。 。仿真结果证明,与基于LMS的方案相比,该算法不仅提供了更快的收敛速度,而且还提供了更高的稳态性能。此外,如果适当选择了回归矢量和滤波器长度参数的数量,并且与递归最小二乘(RLS)相比,新方法在稳态阶段可获得可接受的失调性能,且计算成本较低。基于方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号