首页> 外文期刊>Signal processing >Instantaneous frequency estimation at low signal-to-noise ratios using time-varying notch filters
【24h】

Instantaneous frequency estimation at low signal-to-noise ratios using time-varying notch filters

机译:使用时变陷波滤波器在低信噪比下进行瞬时频率估计

获取原文
获取原文并翻译 | 示例

摘要

This paper is aimed at finding parametric signal models that perform well at modelling noisy tonals at low signal-to-noise ratios (SNRs). We focus on models that are applied to a segment of data at a time, rather than work their way through the data in a sequential manner as typified by the adaptive methods. Inspired by notch filter theory, we extend the well-known time-varying AR (TVAR) models to include the effects of additive noise, and arrive at two types of time-varying notch filter (TVNF). The first one, like the TVAR model, employs a basis expansion of the filter coefficients. For the second one, we utilise the fact that tonal instantaneous frequencies (IFs) are directly proportional to the angles of the roots of the denominator polynomial, and perform a basis expansion of the IFs. Adaptive notch filters are well known and have been successfully applied in several fields. By application to simulated signals and a section of a dolphin whistle recording, it is shown that the TVNFs perform better than the TVAR model, and are useful tools for low SNR IF estimation. TVNF estimation employs a regularised Gauss-Newton type iterative search algorithm, which exhibits rapid and reliable convergence. Model order determination by Akaike's final prediction error (FPE) criterion is also discussed along with the selection of notch filter design and regularisation parameters.
机译:本文旨在寻找在低信噪比(SNR)下能很好地建模噪声音的参数信号模型。我们专注于一次应用于一个数据段的模型,而不是以自适应方法为代表的顺序方式遍历数据。受陷波滤波器理论的启发,我们扩展了众所周知的时变AR(TVAR)模型,以包括加性噪声的影响,并得出两种时变陷波滤波器(TVNF)。第一个像TVAR模型一样,采用了滤波器系数的基础扩展。对于第二个,我们利用了一个事实,即音调瞬时频率(IF)与分母多项式根的角度成正比,并对IF进行了基础扩展。自适应陷波滤波器是众所周知的,并已成功应用于多个领域。通过将其应用到模拟信号和一段海豚哨声记录中,表明TVNF的性能优于TVAR模型,并且是用于低SNR IF估计的有用工具。 TVNF估计采用正则化的Gauss-Newton型迭代搜索算法,该算法显示出快速而可靠的收敛性。还讨论了根据Akaike的最终预测误差(FPE)标准确定模型顺序,以及选择陷波滤波器设计和正则化参数的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号