首页> 外文期刊>Signal processing >Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition
【24h】

Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition

机译:脊波变换和频率方向空间分解的旋转不变纹理分类

获取原文
获取原文并翻译 | 示例

摘要

A new rotation invariant feature extraction method in the ridgelet transform domain for texture classification is proposed. Ridgelet transform can be divided into two stages: the Radon transform stage and the 1 -D wavelet transform stage. According to the Projection-Slice theorem, the Radon transform actually provides information about the image data on a polar-grid in the frequency domain. This is ideal for rotation invariant feature extraction. Furthermore, by using wavelets that have compact support in the frequency domain, we can actually use ridgelet transform to achieve frequency-orientation decompositions for the given image data, which is similar to the multi-channel filtering technique. This makes the proposed method very effective in capturing texture properties for classification. Experimental results show a good performance achieved by the proposed method.
机译:提出了一种在脊波变换域中用于纹理分类的旋转不变特征提取新方法。 Ridgelet变换可分为两个阶段:Radon变换阶段和一维小波变换阶段。根据Projection-Slice定理,Radon变换实际上在频域中提供有关极网格上图像数据的信息。这是旋转不变特征提取的理想选择。此外,通过使用在频域中具有紧凑支持的小波,我们实际上可以使用脊波变换来实现给定图像数据的频率方向分解,这类似于多通道滤波技术。这使得所提出的方法在捕获用于分类的纹理特性方面非常有效。实验结果表明,该方法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号